34 research outputs found

    Influence of experimental parameters on in vitro human skin permeation of Bisphenol A.

    Get PDF
    Bisphenol A (BPA) in vitro skin permeation studies have shown inconsistent results, which could be due to experimental conditions. We studied the impact of in vitro parameters on BPA skin permeation using flow-through diffusion cells with ex-vivo human skin (12 donors, 3-12 replicates). We varied skin status (viable or frozen skin) and thickness (200, 400, 800 μm), BPA concentrations (18, 250 mg/l) and vehicle volumes (10, 100 and 1000 μl/cm <sup>2</sup> ). These conditions led to a wide range of BPA absorption (2%-24% after 24 h exposure), peak permeation rates (J = 0.02-1.31 μg/cm <sup>2</sup> /h), and permeability coefficients (K <sub>p</sub> = 1.6-5.2 × 10 <sup>-3</sup> cm/h). This is the first time steady state conditions were reached for BPA aqueous solutions in vitro (1000 μl/cm <sup>2</sup> applied at concentration 250 mg/l). A reduction of the skin thickness from 800 and 400 μm to 200 μm led to a 3-fold increase of J (P < 0.05). A reduction of the vehicle volume from 1000 to 100 led to a 2-fold decrease in J (P > 0.05). Previously frozen skin led to a 3-fold increase in J compared to viable skin (P < 0.001). We found that results from published studies were consistent when adjusting J according to experimental parameters. We propose appropriate J values for different exposure scenarios to calculate BPA internal exposures for use in risk assessment

    Hematological variations in healthy participants exposed 2 h to propylene glycol ethers under controlled conditions.

    Get PDF
    Glycol ethers are solvents used in a plethora of occupational and household products exposing the users to potential toxic effects. Several glycol ethers derived from ethylene glycol induce hematological toxicity, such as anemia in workers. The exposure effects on blood cells of glycol ethers derived from propylene glycol are unknown in humans. The aim of our study was to evaluate blood parameters indicative of red blood cell (RBC) hemolysis and oxidative stress in participants exposed to propylene glycol (propylene glycol monobutyl ether (PGBE) and propylene glycol monomethyl ether (PGME)), two extensively used propylene glycol derivatives worldwide. Seventeen participants were exposed 2 h in a control inhalation exposure chamber to low PGME (35 ppm) and PGBE (15 ppm) air concentrations. Blood was regularly collected before, during (15, 30, 60, and 120 min), and 60 min after exposure for RBC and oxidative stress analyses. Urine was also collected for clinical effects related to hemolysis. Under the study conditions, our results showed that the blood parameters such as RBCs, hemoglobin concentration, and white blood cells tended to increase in response to PGME and PGBE exposures. These results raise questions about the possible effects in people regularly exposed to higher concentrations, such as workers

    Rapid Liquid Chromatography-Tandem Mass Spectrometry Analysis of Two Urinary Oxidative Stress Biomarkers: 8-oxodG and 8-isoprostane.

    Get PDF
    Human biomonitoring of oxidative stress relies on urinary effect biomarkers such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), and 8-iso-prostaglandin F2α (8-isoprostane); however, their levels reported for similar populations are inconsistent in the scientific literature. One of the reasons is the multitude of analytical methods with varying degrees of selectivity used to quantify these biomarkers. Single-analyte methods are often used, requiring multiple injections that increase both time and cost. We developed a rapid ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method to quantify both urinary biomarkers simultaneously. A reversed-phase column using a gradient consisting of 0.1% acetic acid in water and 0.1% acetic acid in methanol/acetonitrile (70:30) was used for separation. The MS detection was by positive (8-oxodG) and negative (8-isoprostane) ion-mode by multiple reaction monitoring. Very low limit of detection (<20 pg/mL), excellent linearity (R2 > 0.999), accuracy (near 100%), and precision (CV < 10%) both for intra-day and inter-day experiments were achieved, as well as high recovery rates (>91%). Matrix effects were observed but were compensated by using internal standards. Our newly developed method is applicable for biomonitoring studies as well as large epidemiological studies investigating the effect of oxidative damage, as it requires only minimal clean up using solid phase extraction

    Urinary 8-OHdG as a Biomarker for Oxidative Stress: A Systematic Literature Review and Meta-Analysis.

    Get PDF
    Oxidative stress reflects a disturbance in the balance between the production and accumulation of reactive oxygen species (ROS). ROS are scavenged by the antioxidant system, but when in excess concentration, they can oxidize proteins, lipids, and DNA. DNA damage is usually repaired, and the oxidized products are excreted in urine. 8-hydroxy-2-deoxyguanosine is considered a biomarker for oxidative damage of DNA. It is needed to define background ranges for 8-OHdG, to use it as a measure of oxidative stress overproduction. We established a standardized protocol for a systematic review and meta-analysis to assess background ranges for urinary 8-OHdG concentrations in healthy populations. We computed geometric mean (GM) and geometric standard deviations (GSD) as the basis for the meta-analysis. We retrieved an initial 1246 articles, included 84 articles, and identified 128 study subgroups. We stratified the subgroups by body mass index, gender, and smoking status reported. The pooled GM value for urinary 8-OHdG concentrations in healthy adults with a mean body mass index (BMI) ≤ 25 measured using chemical methods was 3.9 ng/mg creatinine (interquartile range (IQR): 3 to 5.5 ng/mg creatinine). A significant positive association was observed between smoking and urinary 8-OHdG concentrations when measured by chemical analysis. No gender effect was observed

    Malondialdehyde and anion patterns in exhaled breath condensate among subway workers.

    Get PDF
    Underground transportation systems can contribute to the daily particulates and metal exposures for both commuter and subway workers. The redox and metabolic changes in workers exposed to such metal-rich particles have yet to be characterized. We hypothesize that the distribution of nitrosative/oxidative stress and related metabolic biomarkers in exhaled breath condensate (EBC) are modified depending on exposures. Particulate number and size as well as mass concentration and airborne metal content were measured in three groups of nine subway workers (station agents, locomotive operators and security guards). In parallel, pre- and post-shift EBC was collected daily during two consecutive working weeks. In this biological matrix, malondialdehyde, lactate, acetate, propionate, butyrate, formate, pyruvate, the sum of nitrite and nitrate (ΣNO <sub>x</sub> ) and the ratio nitrite/nitrate as well as metals and nanoparticle concentrations was determined. Weekly evolution of the log-transformed selected biomarkers as well as their association with exposure variables was investigated using linear mixed effects models with the participant ID as random effect. The professional activity had a strong influence on the pattern of anions and malondialdehyde in EBC. The daily number concentration and the lung deposited surface area of ultrafine particles was consistently and mainly associated with nitrogen oxides variations during the work-shift, with an inhibitory effect on the ΣNO <sub>x</sub> . We observed that the particulate matter (PM) mass was associated with a decreasing level of acetate, lactate and ΣNO <sub>x</sub> during the work-shift, suggestive of a build-up of these anions during the previous night in response to exposures from the previous day. Lactate was moderately and positively associated with some metals and with the sub-micrometer particle concentration in EBC. These results are exploratory but suggest that exposure to subway PM could affect concentrations of nitrogen oxides as well as acetate and lactate in EBC of subway workers. The effect is modulated by the particle size and can correspond to the body's cellular responses under oxidative stress to maintain the redox and/or metabolic homeostasis

    Urinary Malondialdehyde (MDA) Concentrations in the General Population-A Systematic Literature Review and Meta-Analysis.

    Get PDF
    Oxidative stress has been associated with various inflammation-related human diseases. It is defined as an imbalance between the production and elimination of reactive oxygen species (ROS). ROS can oxidize proteins, lipids, and DNA, and some of these oxidized products are excreted in urine, such as malondialdehyde (MDA), which is considered a biomarker for oxidative damage of lipids. To interpret changes of this biomarker as a measure of oxidative species overproduction in humans, a background range for urinary MDA concentration in the general population is needed. We sought to establish urinary MDA concentration ranges for healthy adult populations based on reported values in the available scientific literature. We conducted a systematic review and meta-analysis using the standardized protocol registered in PROSPERO (CRD42020146623). EMBASE, PubMed, Web of Science, and Cochrane library databases were searched from journal inception up to October 2020. We included 35 studies (divided into 47 subgroups for the quantitative analysis). Only studies that measured creatinine-corrected urinary MDA with high-performance liquid chromatography (HPLC) with mass spectrometry (MS), fluorescence detection, or UV photometry were included. The geometric mean (GM) of urinary MDA concentration was 0.10 mg/g creatinine and 95% percentile confidence interval (CI) 0.07-0.12. Age, geographical location but not sex, and smoking status had a significant effect on urinary MDA concentrations. There was a significant increasing trend of urinary MDA concentrations with age. These urinary MDA values should be considered preliminary, as they are based on mostly moderate to some low-quality evidence studies. Although urinary MDA can reliably reflect excessive oxidative stress in a population, the influence of physiological parameters that affect its meaning needs to be addressed as well as harmonizing the chemical analytical methods

    Producers of Engineered Nanomaterials-What Motivates Company and Worker Participation in Biomonitoring Programs?

    Get PDF
    Production and handling of engineered nanomaterials (ENMs) can yield worker exposure to these materials with the potential for unforeseen negative health effects. Biomonitoring enables regular exposure and health assessment and an effective risk management. We aimed to identify factors influencing biomonitoring acceptance according to hierarchical positions of ENM producers. Managers and workers were invited to complete an online questionnaire. Forty-three companies producing or handling ENMs such as titanium dioxide (61%) and multi-walled carbon nanotubes (44%) participated. The majority of managers (72%) and all workers responded positively to participating in biomonitoring studies. The main reasons for refusing participation included concerns about data confidentiality and sufficient knowledge about ENM health and safety. Acquisitions of individual study results, improvement of workers' safety, and help to the development of ENM-specific health and safety practice were among the most valuable reasons for positively considering participation. All workers indicated feeling comfortable with biomonitoring procedures of exhaled air sampling-about half were similarly comfortable with exhaled breath condensate, urine, and buccal cell sampling. The majority of both workers and managers stated that participation in a biomonitoring program should take place during working hours. Although our survey only had limited participation, our results are useful in designing appropriate biomonitoring programs for workers exposed to ENMs

    Associating Air Pollution with Cytokinesis-Block Micronucleus Assay Parameters in Lymphocytes of the General Population in Zagreb (Croatia).

    Get PDF
    Air pollution is recognized as one of the most serious public health issues worldwide and was declared to be a leading environmental cause of cancer deaths. At the same time, the cytokinesis-block micronucleus (CBMN) assay serves as a cancer predictive method that is extensively used in human biomonitoring for populations exposed to environmental contamination. The objective of this cross-sectional study is two-fold: to evaluate genomic instability in a sample (N = 130) of healthy, general population residents from Zagreb (Croatia), chronically exposed to different levels of air pollution, and to relate them to air pollution levels in the period from 2011 to 2015. Measured frequencies of CBMN assay parameters were in agreement with the baseline data for the general population of Croatia. Air pollution exposure was based on four factors obtained from a factor analysis of all exposure data obtained for the examined period. Based on the statistical results, we did not observe a significant positive association between any of the CBMN assay parameters tested and measured air pollution parameters for designated time windows, except for benzo(a)pyrene (B[a]P) that showed significant negative association. Our results show that measured air pollution parameters are largely below the regulatory limits, except for B[a]P, and as such, they do not affect CBMN assay parameters' frequency. Nevertheless, as air pollution is identified as a major health threat, it is necessary to conduct prospective studies investigating the effect of air pollution on genome integrity and human health

    Reusability of filtering facepiece respirators after decontamination through drying and germicidal UV irradiation.

    Get PDF
    During pandemics, such as the SARS-CoV-2, filtering facepiece respirators plays an essential role in protecting healthcare personnel. The recycling of respirators is possible in case of critical shortage, but it raises the question of the effectiveness of decontamination as well as the performance of the reused respirators. Disposable respirators were subjected to ultraviolet germicidal irradiation (UVGI) treatment at single or successive doses of 60 mJ/cm <sup>2</sup> after a short drying cycle (30 min, 70°C). The germicidal efficacy of this treatment was tested by spiking respirators with two staphylococcal bacteriophages (vB_HSa_2002 and P66 phages). The respirator performance was investigated by the following parameters: particle penetration (NaCl aerosol, 10-300 nm), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry and mechanical tensile tests. No viable phage particles were recovered from any of the respirators after decontamination (log reduction in virus titre >3), and no reduction in chemical or physical properties (SEM, particle penetrations <5%-6%) were observed. Increasing the UVGI dose 10-fold led to chemical alterations of the respirator filtration media (FTIR) but did not affect the physical properties (particle penetration), which was unaltered even at 3000 mJ/cm <sup>2</sup> (50 cycles). When respirators had been used by healthcare workers and undergone decontamination, they had particle penetration significantly greater than never donned respirators. This decontamination procedure is an attractive method for respirators in case of shortages during a SARS pandemic. A successful implementation requires a careful design and particle penetration performance control tests over the successive reuse cycles
    corecore