46 research outputs found

    Intrathecal production of interleukin-12 and gamma interferon in patients with bacterial meningitis

    Get PDF
    To assess the role of interleukin-12 (IL-12) and gamma interferon (IFN-gamma) in children with bacterial meningitis, bioactive IL-12 (p70) and the inactive subunit p40 and IFN-gamma were measured in serum and cerebrospinal fluid (CSF) from 35 children with bacterial meningitis and 10 control subjects. The production of IFN-gamma is induced by IL-12 with tumor necrosis factor alpha (TNF-alpha) as a costimulator and inhibited by IL-10. CSF concentrations of IL-12 p40 as well as those of IFN-gamma were markedly elevated, whereas IL-12 p70 was hardly detectable. Detectable CSF levels of IFN-gamma correlated positively with IL-12 p40 (r = 0.40, P = 0.02) and TNF-alpha (r = 0.46, P = 0.04) but not with IL-6, IL-8, or IL-10. In contrast to CSF levels of TNF-alpha, IL-12, and IL-10, those of IFN-gamma were significantly higher in patients with pneumococcal meningitis than in children with meningitis caused by Haemophilus influenzae and Neisseria meningitidis, presumably because of a high CSF TNF-alpha/IL-10 ratio in the former. We suggest that IL-12- and TNF-alpha-induced IFN-gamma production may contribute to the natural immunity against microorganisms in the CSF compartment during the acute phase of bacterial meningitis

    Cold Physiology: Postprandial Blood Flow Dynamics and Metabolism in the Antarctic Fish Pagothenia borchgrevinki

    Get PDF
    Previous studies on metabolic responses to feeding (i.e. the specific dynamic action, SDA) in Antarctic fishes living at temperatures below zero have reported long-lasting increases and small peak responses. We therefore hypothesized that the postprandial hyperemia also would be limited in the Antarctic fish Pagothenia borchgrevinki. The proportion of cardiac output directed to the splanchnic circulation in unfed fish was 18%, which is similar to temperate fish species. Contrary to our prediction, however, gastrointestinal blood flow had increased by 88% at twenty four hours after feeding due to a significant increase in cardiac output and a significant decrease in gastrointestinal vascular resistance. While gastric evacuation time appeared to be longer than in comparable temperate species, digestion had clearly commenced twenty four hours after feeding as judged by a reduction in mass of the administered feed. Even so, oxygen consumption did not increase suggesting an unusually slowly developing SDA. Adrenaline and angiotensin II was injected into unfed fish to investigate neuro-humoral control mechanisms of gastrointestinal blood flow. Both agonists increased gastrointestinal vascular resistance and arterial blood pressure, while systemic vascular resistance was largely unaffected. The hypertension was mainly due to increased cardiac output revealing that the heart and the gastrointestinal vasculature, but not the somatic vasculature, are important targets for these agonists. It is suggested that the apparently reduced SDA in P. borchgrevinki is due to a depressant effect of the low temperature on protein assimilation processes occurring outside of the gastrointestinal tract, while the gastrointestinal blood flow responses to feeding and vasoactive substances resemble those previously observed in temperate species

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons
    corecore