50 research outputs found

    Whether, when and how chronic inflammation increases the risk of developing late-onset Alzheimer's disease

    Get PDF
    Neuropathological studies have revealed the presence of a broad variety of inflammation-related proteins (complement factors, acute-phase proteins, pro-inflammatory cytokines) in Alzheimer's disease (AD) brains. These constituents of innate immunity are involved in several crucial pathogenic events of the underlying pathological cascade in AD, and recent studies have shown that innate immunity is involved in the etiology of late-onset AD. Genome-wide association studies have demonstrated gene loci that are linked to the complement system. Neuropathological and experimental studies indicate that fibrillar amyloid-beta (A beta) can activate the innate immunity-related CD14 and Toll-like receptor signaling pathways of glial cells for pro-inflammatory cytokine production. The production capacity of this pathway is under genetic control and off spring with a parental history of late-onset AD have a higher production capacity for pro-inflammatory cytokines. The activation of microglia by fibrillar A beta deposits in the early preclinical stages of AD can make the brain susceptible later on for a second immune challenge leading to enhanced production of pro-inflammatory cytokines. An example of a second immune challenge could be systemic inflammation in patients with preclinical AD. Prospective epidemiological studies show that elevated serum levels of acute phase reactants can be considered as a risk factor for AD. Clinical studies suggest that peripheral inflammation increases the risk of dementia, especially in patients with preexistent cognitive impairment, and accelerates further deterioration in demented patients. The view that peripheral inflammation can increase the risk of dementia in older people provides scope for preventio

    Clusters of co-abundant proteins in the brain cortex associated with fronto-temporal lobar degeneration

    Get PDF
    Background: \nFrontotemporal lobar degeneration (FTLD) is characterized pathologically by neuronal and glial inclusions of hyperphosphorylated tau or by neuronal cytoplasmic inclusions of TDP43. This study aimed at deciphering the molecular mechanisms leading to these distinct pathological subtypes. \n \nMethods: \nTo this end, we performed an unbiased mass spectrometry-based proteomic and systems-level analysis of the middle frontal gyrus cortices of FTLD-tau (n = 6), FTLD-TDP (n = 15), and control patients (n = 5). We validated these results in an independent patient cohort (total n = 24). \n \nResults: \nThe middle frontal gyrus cortex proteome was most significantly altered in FTLD-tau compared to controls (294 differentially expressed proteins at FDR = 0.05). The proteomic modifications in FTLD-TDP were more heterogeneous (49 differentially expressed proteins at FDR = 0.1). Weighted co-expression network analysis revealed 17 modules of co-regulated proteins, 13 of which were dysregulated in FTLD-tau. These modules included proteins associated with oxidative phosphorylation, scavenger mechanisms, chromatin regulation, and clathrin-mediated transport in both the frontal and temporal cortex of FTLD-tau. The most strongly dysregulated subnetworks identified cyclin-dependent kinase 5 (CDK5) and polypyrimidine tract-binding protein 1 (PTBP1) as key players in the disease process. Dysregulation of 9 of these modules was confirmed in independent validation data sets of FLTD-tau and control temporal and frontal cortex (total n = 24). Dysregulated modules were primarily associated with changes in astrocyte and endothelial cell protein abundance levels, indicating pathological changes in FTD are not limited to neurons. \n \nConclusions: \nUsing this innovative workflow and zooming in on the most strongly dysregulated proteins of the identified modules, we were able to identify disease-associated mechanisms in FTLD-tau with high potential as biomarkers and/or therapeutic targets

    Identification of the allosteric P2X7 receptor antagonist [11C]SMW139 as a PET tracer of microglial activation

    Get PDF
    The P2X7 receptor plays a significant role in microglial activation, and as a potential drug target, the P2X7 receptor is also an interesting target in positron emission tomography. The current study aimed at the development and evaluation of a potent tracer targeting the P2X7 receptor, to which end four adamantanyl benzamide analogues with high affinity for the human P2X7 receptor were labelled with carbon-11. All four analogues could be obtained in excellent radiochemical yield and high radiochemical purity and molar activity, and all analogues entered the rat brain. [11C]SMW139 showed the highest metabolic stability in rat plasma, and showed high binding to the hP2X7 receptor in vivo in a hP2X7 receptor overexpressing rat model. Although no significant difference in binding of [11C]SMW139 was observed between post mortem brain tissue of Alzheimer's disease patients and that of healthy controls in in vitro autoradiography experiments, [11C]SMW139 could be a promising tracer for P2X7 receptor imaging using positron emission tomography, due to high receptor binding in vivo in the hP2X7 receptor overexpressing rat model. However, further investigation of both P2X7 receptor expression and binding of [11C]SMW139 in other neurological diseases involving microglial activation is warranted

    EIF2AK3 variants in Dutch patients with Alzheimer's disease

    Get PDF
    Next-generation sequencing has contributed to our understanding of the genetics of Alzheimer's disease (AD) and has explained a substantial part of the missing heritability of familial AD. We sequenced 19 exomes from 8 Dutch families with a high AD burden and identified EIF2AK3, encoding for protein kinase RNA-like endoplasmic reticulum kinase (PERK), as a candidate gene. Gene-based burden analysis in a Dutch AD exome cohort containing 547 cases and 1070 controls showed a significant association of EIF2AK3 with AD (OR 1.84 [95% CI 1.07–3.17], p-value 0.03), mainly driven by the variant p.R240H. Genotyping of this variant in an additional cohort from the Rotterdam Study showed a trend toward association with AD (p-value 0.1). Immunohistochemical staining with pPERK and peIF2α of 3 EIF2AK3 AD carriers showed an increase in hippocampal neuronal cells expressing these proteins compared with nondemented controls, but no difference was observed in AD noncarriers. This study suggests that rare variants in EIF2AK3 may be associated with disease risk in AD

    Endoplasmic reticulum: The unfolded protein response is tangled in neurodegeneration

    No full text
    The endoplasmic reticulum (ER) is involved in the folding and maturation of membrane-bound and secreted proteins. Disturbed homeostasis in the ER can lead to accumulation of misfolded proteins, which trigger a stress response called the unfolded protein response (UPR). In neurodegenerative diseases that are classified as tauopathies, activation of the UPR coincides with the pathogenic accumulation of the microtubule associated protein tau. Several lines of evidence indicate that UPR activation contributes to increased levels of phosphorylated tau, a prerequisite for the formation of tau aggregates. Increased understanding of the crosstalk between signaling pathways involved in protein quality control in the ER and tau phosphorylation will support the development of new therapeutic targets that promote neuronal survival. (C) 2012 Elsevier Ltd. All rights reserve

    Stoop or squat: a review of biomechanical studies on lifting technique

    No full text
    OBJECTIVE: To assess the biomechanical evidence in support of advocating the squat lifting technique as an administrative control to prevent low back pain. BACKGROUND: Instruction with respect to lifting technique is commonly employed to prevent low back pain. The squat technique is the most widely advised lifting technique. Intervention studies failed to show health effects of this approach and consequently the rationale behind the advised lifting techniques has been questioned. METHODS: Biomechanical studies comparing the stoop and squat technique were systematically reviewed. The dependent variables used in these studies and the methods by which these were measured or estimated were ranked for validity as indicators of low back load. RESULTS: Spinal compression as indicated by intra-discal pressure and spinal shrinkage appeared not significantly different between both lifting techniques. Net moments and compression forces based on model estimates were found to be equal or somewhat higher in squat than in stoop lifting. Only when the load could be lifted from a position in between the feet did squat lifting cause lower net moments, although the studies reporting this finding had a marginal validity. Shear force and bending moments acting on the spine appeared lower in squat lifting. Net moments and compression forces during lifting reach magnitudes, that can probably cause injury, whereas shear forces and bending moments remained below injury threshold in both techniques. CONCLUSION: The biomechanical literature does not provide support for advocating the squat technique as a means of preventing low back pain. RELEVANCE: Training in lifting technique is widely used in primary and secondary prevention of low back pain, though health effects have not been proven. The present review assesses the biomechanical evidence supporting the most widely advocated lifting technique

    Alzheimer’s disease and adult neurogenesis—Are endogenous stem cells part of the solution?

    No full text
    The human brain produces new neurons that mediate hippocampal plasticity but also have a potential role in hippocampal-related disorders, such as Alzheimer’s disease and dementia. Factors such as stress and aging that reduce adult neurogenesis also serve as independent risk factors for Alzheimer’s disease. Causality between loss of neurogenesis and hippocampal dysfunction has not been established; however, neurogenesis is an attractive research avenue for therapy since it is readily modifiable. Activities such as running and enrichment increase the proliferation of neural stem cells and survival of nascent neuroblasts. Adult neurogenesis may alternatively reflect capacity to overcome age-dependent insults and neurodegeneration in the hippocampus. This collectively indicates that stimulation of endogenous cells or transplantation of neural stem cells are potential pathways reversing the behavioral changes associated with neurodegenerative disorders by augmenting structural plasticity of the hippocampus. Continued research in this area and in appropriate animal models of disease is critical for evaluating whether neurogenesis-based therapeutic strategies will have the potential to aid those with degenerative conditions
    corecore