94 research outputs found
Compared to placebo, long-term antibiotics resolve otitis media with effusion (OME) and prevent acute otitis media with perforation (AOMwiP) in a high-risk population: A randomized controlled trial
Β© 2008 Leach et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background :
For children at high risk of chronic suppurative otitis media (CSOM), strategies to prevent acute otitis media with perforation (AOMwiP) may reduce progression to CSOM.
Methods :
In a double blind study in northern Australia, 103 Aboriginal infants with first detection of OME were randomised to receive either amoxicillin (50 mg/kg/d BD) or placebo for 24 weeks, or until bilateral aerated middle ears were diagnosed at two successive monthly examinations (success). Standardised clinical assessments and international standards for microbiology were used.
Results :
Five of 52 infants in the amoxicillin group and none of 51 infants in the placebo group achieved success at the end of therapy (Risk Difference = 9.6% [95% confidence interval 1.6,17.6]). Amoxicillin significantly reduced the proportion of children with i) perforation at the end of therapy (27% to 12% RD = -16% [-31,-1]), ii) recurrent perforation during therapy (18% to 4% RD = -14% [-25,-2]), and iii) reduced the proportion of examinations with a diagnosis of perforation during therapy (20% to 8% adjusted risk ratio 0.36 [0.15,0.83] p = 0.017). During therapy, the proportion of examinations with penicillin non-susceptible (MIC > 0.1 microg/ml) pneumococci was not significantly different between the amoxicillin group (34%) and the placebo group (40%). Beta-lactamase positive non-capsular H. influenzae (NCHi) were uncommon during therapy but more frequent in the amoxicillin group (10%) than placebo (5%).
Conclusion :
Aboriginal infants receiving continuous amoxicillin had more normal ears, fewer perforations, and less pneumococcal carriage. There was no statistically significant increase in resistant pneumococci or NCHi in amoxicillin children compared to placebo children who received regular paediatric care and antibiotic treatment for symptomatic illnesses
Computational Fragment-Based Binding Site Identification by Ligand Competitive Saturation
Fragment-based drug discovery using NMR and x-ray crystallographic methods has proven utility but also non-trivial time, materials, and labor costs. Current computational fragment-based approaches circumvent these issues but suffer from limited representations of protein flexibility and solvation effects, leading to difficulties with rigorous ranking of fragment affinities. To overcome these limitations we describe an explicit solvent all-atom molecular dynamics methodology (SILCS: Site Identification by Ligand Competitive Saturation) that uses small aliphatic and aromatic molecules plus water molecules to map the affinity pattern of a protein for hydrophobic groups, aromatic groups, hydrogen bond donors, and hydrogen bond acceptors. By simultaneously incorporating ligands representative of all these functionalities, the method is an in silico free energy-based competition assay that generates three-dimensional probability maps of fragment binding (FragMaps) indicating favorable fragmentβΆprotein interactions. Applied to the two-fold symmetric oncoprotein BCL-6, the SILCS method yields two-fold symmetric FragMaps that recapitulate the crystallographic binding modes of the SMRT and BCOR peptides. These FragMaps account both for important sequence and structure differences in the C-terminal halves of the two peptides and also the high mobility of the BCL-6 His116 sidechain in the peptide-binding groove. Such SILCS FragMaps can be used to qualitatively inform the design of small-molecule inhibitors or as scoring grids for high-throughput in silico docking that incorporate both an atomic-level description of solvation and protein flexibility
Whole-cell cancer vaccination: from autologous to allogeneic tumor- and dendritic cell-based vaccines
The field of tumor vaccination is currently undergoing a shift in focus, from individualized tailor-made vaccines to more generally applicable vaccine formulations. Although primarily predicated by financial and logistic considerations, stemming from a growing awareness that clinical development for wide-scale application can only be achieved through backing from major pharmaceutical companies, these new approaches are also supported by a growing knowledge of the intricacies and minutiae of antigen presentation and effector T-cell activation. Here, the development of whole-cell tumor and dendritic cell (DC)-based vaccines from an individualized autologous set-up to a more widely applicable allogeneic approach will be discussed as reflected by translational studies carried out over the past two decades at our laboratories and clinics in the vrije universiteit medical center (VUmc) in Amsterdam, The Netherlands
Rapid Reversal of Chondroitin Sulfate Proteoglycan Associated Staining in Subcompartments of Mouse Neostriatum during the Emergence of Behaviour
BACKGROUND: The neostriatum, the mouse homologue of the primate caudate/putamen, is the input nucleus for the basal ganglia, receiving both cortical and dopaminergic input to each of its sub-compartments, the striosomes and matrix. The coordinated activation of corticostriatal pathways is considered vital for motor and cognitive abilities, yet the mechanisms which underlie the generation of these circuits are unknown. The early and specific targeting of striatal subcompartments by both corticostriatal and nigrostriatal terminals suggests activity-independent mechanisms, such as axon guidance cues, may play a role in this process. Candidates include the chondroitin sulfate proteoglycan (CSPG) family of glycoproteins which have roles not only in axon guidance, but also in the maturation and stability of neural circuits where they are expressed in lattice-like perineuronal nets (PNNs). METHODOLOGY/PRINCIPAL FINDINGS: The expression of CSPG-associated structures and PNNs with respect to neostriatal subcompartments has been examined qualitatively and quantitatively using double-labelling for Wisteria floribunda agglutinin (WFA), and the mu-opioid receptor (muOR), a marker for striosomes, at six postnatal ages in mice. We find that at the earliest ages (postnatal day (P)4 and P10), WFA-positive clusters overlap preferentially with the striosome compartment. By P14, these clusters disappear. In contrast, PNNs were first seen at P10 and continued to increase in density and spread throughout the caudate/putamen with maturation. Remarkably, the PNNs overlap almost exclusively with the neostriatal matrix. CONCLUSIONS/SIGNIFICANCE: This is the first description of a reversal in the distribution of CSPG associated structures, as well as the emergence and maintenance of PNNs in specific subcompartments of the neostriatum. These results suggest diverse roles for CSPGs in the formation of functional corticostriatal and nigrostriatal connectivity within the striosome and matrix compartments of the developing caudate/putamen
- β¦