50 research outputs found

    Insights into the complex regulation of rpoS in Borrelia burgdorferi

    Get PDF
    Co-ordinated regulation of gene expression is required for the transmission and survival of Borrelia burgdorferi in different hosts. The sigma factor RpoS (σS), as regulated by RpoN (σ54), has been shown to regulate key virulence factors (e.g. OspC) required for these processes. As important, multiple signals (e.g. temperature, pH, cell density, oxygen) have been shown to increase the expression of σS-dependent genes; however, little is known about the signal transduction mechanisms that modulate the expression of rpoS. In this report we show that: (i) rpoS has a σ54-dependent promoter that requires Rrp2 to activate transcription; (ii) Rrp2Δ123, a constitutively active form of Rrp2, activated σ54-dependent transcription of rpoS/P-lacZ reporter constructs in Escherichia coli; (iii) quantitative reverse transcription polymerase chain reaction (QRT-PCR) experiments with reporter cat constructs in B. burgdorferi indicated that Rrp2 activated transcription of rpoS in an enhancer-independent fashion; and finally, (iv) rpoN is required for cell density- and temperature-dependent expression of rpoS in B. burgdorferi, but histidine kinase Hk2, encoded by the gene immediately upstream of rrp2, is not essential. Based on these findings, a model for regulation of rpoS has been proposed which provides mechanisms for multiple signalling pathways to modulate the expression of the σS regulon in B. burgdorferi

    Soluble forms of tau are toxic in Alzheimer's disease

    Get PDF
    Accumulation of neurofibrillary tangles (NFT), intracellular inclusions of fibrillar forms of tau, is a hallmark of Alzheimer Disease. NFT have been considered causative of neuronal death, however, recent evidence challenges this idea. Other species of tau, such as soluble misfolded, hyperphosphorylated, and mislocalized forms, are now being implicated as toxic. Here we review the data supporting soluble tau as toxic to neurons and synapses in the brain and the implications of these data for development of therapeutic strategies for Alzheimer’s disease and other tauopathies

    Impaired PTPN13 phosphatase activity in spontaneous or HPV-induced squamous cell carcinomas potentiates oncogene signaling through the MAP kinase pathway.

    No full text
    Contains fulltext : 80334.pdf (publisher's version ) (Closed access)Human papillomaviruses (HPVs) are a causative factor in over 90% of cervical and 25% of head and neck squamous cell carcinomas (HNSCCs). The C terminus of the high-risk HPV 16 E6 oncoprotein physically associates with and degrades a non-receptor protein tyrosine phosphatase (PTPN13), and PTPN13 loss synergizes with H-Ras(V12) or ErbB2 for invasive growth in vivo. Oral keratinocytes that have lost PTPN13 and express H-Ras(V12) or ErbB2 show enhanced Ras/RAF/MEK/Erk signaling. In co-transfection studies, wild-type PTPN13 inhibited Ras/RAF/MEK/Erk signaling in HEK 293 cells that overexpress ErbB2, EGFR or H-Ras(V12), whereas an enzymatically inactive PTPN13 did not. Twenty percent of HPV-negative HNSCCs had PTPN13 phosphatase mutations that did not inhibit Ras/RAF/MEK/Erk signaling. Inhibition of Ras/RAF/MEK/Erk signaling using MEK inhibitor U0126 blocked anchorage-independent growth in cells lacking PTPN13. These findings show that PTPN13 phosphatase activity has a physiologically significant role in regulating MAP kinase signaling
    corecore