32 research outputs found

    Analysis of Host-Mediated Repair Mechanisms after Human CNS-Stem Cell Transplantation for Spinal Cord Injury: Correlation of Engraftment with Recovery

    Get PDF
    BACKGROUND:Human central nervous system-stem cells grown as neurospheres (hCNS-SCns) self-renew, are multipotent, and have potential therapeutic applications following trauma to the spinal cord. We have previously shown locomotor recovery in immunodeficient mice that received a moderate contusion spinal cord injury (SCI) and hCNS-SCns transplantation 9 days post-injury (dpi). Engrafted hCNS-SCns exhibited terminal differentiation to myelinating oligodendrocytes and synapse-forming neurons. Further, selective ablation of human cells using Diphtheria toxin (DT) abolished locomotor recovery in this paradigm, suggesting integration of human cells within the mouse host as a possible mechanism for the locomotor improvement. However, the hypothesis that hCNS-SCns could alter the host microenvironment as an additional or alternative mechanism of recovery remained unexplored; we tested that hypothesis in the present study. METHODS AND FINDINGS:Stereological quantification of human cells using a human-specific cytoplasmic marker demonstrated successful cell engraftment, survival, migration and limited proliferation in all hCNS-SCns transplanted animals. DT administration at 16 weeks post-transplant ablated 80.5% of hCNS-SCns. Stereological quantification for lesion volume, tissue sparing, descending serotonergic host fiber sprouting, chondroitin sulfate proteoglycan deposition, glial scarring, and angiogenesis demonstrated no evidence of host modification within the mouse spinal cord as a result of hCNS-SCns transplantation. Biochemical analyses supplemented stereological data supporting the absence of neural stem-cell mediated host repair. However, linear regression analysis of the number of engrafted hCNS-SCns vs. the number of errors on a horizontal ladder beam task revealed a strong correlation between these variables (r = -0.78, p<0.05), suggesting that survival and engraftment were directly related to a quantitative measure of recovery. CONCLUSIONS:Altogether, the data suggest that the locomotor improvements associated with hCNS-SCns transplantation were not due to modifications within the host microenvironment, supporting the hypothesis that human cell integration within the host circuitry mediates functional recovery following a 9 day delayed transplant

    Characterization of recovery, repair, and inflammatory processes following contusion spinal cord injury in old female rats: is age a limitation?

    No full text
    BackgroundAlthough the incidence of spinal cord injury (SCI) is steadily rising in the elderly human population, few studies have investigated the effect of age in rodent models. Here, we investigated the effect of age in female rats on spontaneous recovery and repair after SCI. Young (3 months) and aged (18 months) female rats received a moderate contusion SCI at T9. Behavioral recovery was assessed, and immunohistocemical and stereological analyses performed.ResultsAged rats demonstrated greater locomotor deficits compared to young, beginning at 7 days post-injury (dpi) and lasting through at least 28 dpi. Unbiased stereological analyses revealed a selective increase in percent lesion area and early (2 dpi) apoptotic cell death caudal to the injury epicenter in aged versus young rats. One potential mechanism for these differences in lesion pathogenesis is the inflammatory response; we therefore assessed humoral and cellular innate immune responses. No differences in either acute or chronic serum complement activity, or acute neutrophil infiltration, were observed between age groups. However, the number of microglia/macrophages present at the injury epicenter was increased by 50% in aged animals versus young.ConclusionsThese data suggest that age affects recovery of locomotor function, lesion pathology, and microglia/macrophage response following SCI

    Preclinical Efficacy Failure of Human CNS-Derived Stem Cells for Use in the Pathway Study of Cervical Spinal Cord Injury

    No full text
    We previously showed the efficacy of multiple research cell lines (RCLs) of human CNS neural stem cells (HuCNS-SCs) in mouse and rat models of thoracic spinal cord injury (SCI), supporting a thoracic SCI clinical trial. Experts recommend in vivo preclinical testing of the intended clinical cell lot/line (CCL) in models with validity for the planned clinical target. We therefore tested the efficacy of two HuCNS-SC lines in cervical SCI: one RCL, and one CCL intended for use in the Pathway Study of cervical SCI in man. We assessed locomotor recovery and sensory function, as well as engraftment, migration, and fate. No evidence of efficacy of the CCL was observed; some data suggested a negative impact of the CCL on outcomes. These data raise questions about the development and validation of potency/comparability assays for clinical testing of cell products, and lack of US Food and Drug Administration requirements for in vivo testing of intended clinical cell lines

    The effects of mouse strain and age on a model of unilateral cervical contusion spinal cord injury.

    No full text
    There are approximately 1.2 million people currently living with spinal cord injury (SCI), with a majority of cases at the cervical level and half involving incomplete injuries. Yet, as most preclinical research has been focused on bilateral thoracic models, there remains a disconnect between bench and bedside that limits translational success. Here, we profile a clinically relevant model of unilateral cervical contusion injury in the mouse (30kD with 0, 2, 5, or 10 second dwell time). We demonstrate sustained behavioral deficits in performance on grip strength, cylinder reaching, horizontal ladderbeam and CatWalk automated gait analysis tasks. Beyond highlighting reliable parameters for injury assessment, we also explored the effect of mouse strain and age on injury outcome, including evaluation of constitutively immunodeficient mice relevant for neurotransplantation and cellular therapy testing. Comparison of C57Bl/6 and immunodeficient Rag2gamma(c)-/- as well as Agouti SCIDxRag2Gamma(c)-/- hybrid mouse strains revealed fine differences in post-injury ipsilateral grip strength as well as total number of rearings on the cylinder task. Differences in post-SCI contralateral forepaw duty cycle and regularity index as measured by CatWalk gait analysis between the two immunodeficient strains were also observed. Further, assessment of young (3-4 months old) and aging (16-17 months old) Rag2gamma(c)-/- mice identified age-related pre-injury differences in strength and rearing that were largely masked following cervical contusion injury; observations that may help interpret previous results in aged rodents as well as human clinical trials. Collectively, the work provides useful insight for experimental design and analysis of future pre-clinical studies in a translational unilateral cervical contusion injury model
    corecore