18 research outputs found

    Serum-based measurements of stromal activation through ADAM12 associate with poor prognosis in colorectal cancer.

    Get PDF
    BACKGROUND Recently it has been recognized that stromal markers could be used as a clinically relevant biomarker for therapy response and prognosis. Here, we report on a serum marker for stromal activation, A Disintegrin and Metalloprotease 12 (ADAM12) in colorectal cancer (CRC). METHODS Using gene expression databases we investigated ADAM12 expression in CRC and delineated the source of ADAM12 expression. The clinical value of ADAM12 was retrospectively assessed in the CAIRO2 trial in metastatic CRC with 235 patients (31% of total cohort), and an independent rectal cancer cohort (n = 20). RESULTS ADAM12 is expressed by activated CRC associated fibroblasts. In the CAIRO2 trial cohort, ADAM12 serum levels were prognostic (ADAM12 low versus ADAM12 high; median OS 25.3 vs. 17.1 months, HR 1.48 [95% CI 1.11-1.96], P = 0.007). The prognostic potential was specifically high for metastatic rectal cancer (HR 1.78 [95% CI 1.06-3.00], P = 0.030) and mesenchymal subtype tumors (HR 2.12 [95% CI 1.25-3.60], P = 0.004). ADAM12 also showed potential for predicting recurrence in an exploratory analysis of non-metastatic rectal cancers. CONCLUSIONS Here we describe a non-invasive marker for activated stroma in CRC which associates with poor outcome, especially for primary cancers located in the rectum

    Histological phenotypic subtypes predict recurrence risk and response to adjuvant chemotherapy in patients with stage III colorectal cancer

    Get PDF
    Histological ‘phenotypic subtypes’ that classify patients into four groups (immune, canonical, latent and stromal) have previously been demonstrated to stratify survival in a stage I–III colorectal cancer (CRC) pilot cohort. However, clinical utility has not yet been validated. Therefore, this study assessed prognostic value of these subtypes in additional patient cohorts along with associations with risk of recurrence and response to chemotherapy. Two independent stage I–III CRC patient cohorts (internal and external cohort) were utilised to investigate phenotypic subtypes. The primary endpoint was disease‐free survival (DFS) and the secondary endpoint was recurrence risk (RR). Stage II–III patients, from the SCOT adjuvant chemotherapy trial, were utilised to further validate prognostic value and for exploratory analysis assessing associations with adjuvant chemotherapy. In an 893‐patient internal cohort, phenotypic subtype independently associated with DFS (p = 0.025) and this was attenuated in stage III patients (p = 0.020). Phenotypic subtype also independently associated with RR (p < 0.001) in these patients. In a 146‐patient external cohort, phenotypic subtype independently stratified patients by DFS (p = 0.028), validating their prognostic value. In 1343 SCOT trial patients, the effect of treatment type significantly depended on phenotypic subtype (pinteraction = 0.011). Phenotypic subtype independently associated with DFS in stage III patients receiving FOLFOX (p = 0.028). Furthermore, the immune subtype significantly associated with better response to FOLFOX compared to CAPOX adjuvant chemotherapy in stage III patients (p = 0.013). In conclusion, histological phenotypic subtypes are an effective prognostic classification in patients with stage III CRC that associates with risk of recurrence and response to FOLFOX adjuvant chemotherapy

    Clinical Value of Consensus Molecular Subtypes in Colorectal Cancer: A Systematic Review and Meta-Analysis

    No full text
    BACKGROUND: The consensus molecular subtypes (CMSs) of colorectal cancer (CRC) capture tumor heterogeneity at the gene-expression level. Currently, a restricted number of molecular features are used to guide treatment for CRC. We summarize the evidence on the clinical value of the CMSs. METHODS: We systematically identified studies in Medline and Embase that evaluated the prognostic and predictive value of CMSs in CRC patients. A random-effect meta-analysis was performed on prognostic data. Predictive data were summarized. RESULTS: In local disease, CMS4 tumors were associated with worse overall survival (OS) compared with CMS1 (hazard ratio [HR] = 3.28, 95% confidence interval = 1.27 to 8.47) and CMS2 cancers (HR = 2.60, 95% confidence interval = 1.93 to 3.50). In metastatic disease, CMS1 consistently had worse survival than CMS2-4 (OS HR range = 0.33-0.55; progression-free survival HR range = 0.53-0.89). Adjuvant chemotherapy in stage II and III CRC was most beneficial for OS in CMS2 and CMS3 (HR range = 0.16-0.45) and not effective in CMS4 tumors. In metastatic CMS4 cancers, an irinotecan-based regimen improved outcome compared with oxaliplatin (HR range = 0.31-0.72). The addition of bevacizumab seemed beneficial in CMS1, and anti-epidermal growth factor receptor therapy improved outcome for KRAS wild-type CMS2 patients. CONCLUSIONS: The CMS classification holds clear potential for clinical use in predicting both prognosis and response to systemic therapy, which seems to be independent of the classifier used. Prospective studies are warranted to support implementation of the CMS taxonomy in clinical practice

    Classification of colorectal cancer in molecular subtypes by immunohistochemistry

    No full text
    Colorectal cancer (CRC) is a heterogeneous disease, which can be categorized into distinct consensus molecular subtypes (CMSs). These subtypes differ in both clinical as well as biological properties. The gold-standard classification strategy relies on genome-wide expression data, which hampers widespread implementation. Here we describe an immunohistochemical (IHC) Mini Classifier, a practical tool that, in combination with microsatellite instability testing, delivers objective and accurate scoring to classify CRC patients into the main molecular disease subtypes. It is a robust immunohistochemical-based assay containing four specific stainings (FRMD6, ZEB1, HTR2B, and CDX2) in combination with cytokeratin. We also describe an online tool for classification of individual samples based on scoring parameters of these stainings

    The recurring features of molecular subtypes in distinct gastrointestinal malignancies—A systematic review

    No full text
    In colorectal cancer (CRC), pancreatic ductal adenocarcinoma (PDAC) and gastric cancer (GC) multiple studies of inter-tumor heterogeneity have identified molecular subtypes, which correlate with clinical features. Our aim was to investigate the attributes of molecular subtypes across three different gastrointestinal cancer types. We performed a systematic search for publications on molecular subtypes or classifications in PDAC and GC and compared the described subtypes with the established consensus molecular subtypes of CRC. Examining the characteristics of subtypes across CRC, PDAC and GC resulted in four categories of subtypes. We describe uniting and distinguishing features within a mesenchymal, an epithelial, an immunogenic and a metabolic and digestive subtype category. We conclude that molecular subtypes of CRC, PDAC and GC display relevant overlap in molecular features and clinical outcomes. This finding encourages quantitative studies on subtypes across different cancer types and could lead to a paradigm shift in future treatment strategies

    Tumour budding is associated with the mesenchymal colon cancer subtype and RAS/RAF mutations: a study of 1320 colorectal cancers with Consensus Molecular Subgroup (CMS) data.

    Get PDF
    BACKGROUND Tumour budding is an important prognostic factor in colorectal cancer (CRC). Molecular profiling of tumour buds suggests (partial) epithelial-mesenchymal transition and cancer stem-cell phenotype, similarly described in the "mesenchymal" Consensus Molecular Subtype 4 (CMS4), which identifies a particularly poor prognostic subgroup. Here, we determine the association of tumour budding with CMS classification, prognosis, and response to therapy. METHODS AMC-AJCCII-90 cohort (n = 76, stage II) was evaluated for peritumoural budding on H&E slides. LUMC (n = 270, stage I-IV), CAIRO (n = 504, metastatic CRC) and CAIRO2 (n = 472, metastatic CRC) cohorts were investigated for intratumoural budding using pan-cytokeratin-stained tissue microarrays. Budding was scored as count/area, then classified as <5 or ≥5 buds. For all cohorts, CMS classifications were available (gene-expression/immunohistochemistry-based classifiers). RESULTS High (≥5) budding predicted a worse outcome in multivariate analysis in AMC-AJCCII-90 (p = 0.018), LUMC (p < 0.0001), and CAIRO (p = 0.03), and in CAIRO2 (continuous variable, p = 0.02). Tumour budding counts were higher in CMS4 compared to epithelial CMS2/3 cancers (p < 0.01, all), and associated with KRAS/BRAF mutations (p < 0.01, AMC-AJCCII-90, CAIRO, CAIRO2). CONCLUSION Tumour budding is an adverse prognostic factor across all CRC stages and is associated with the mesenchymal CMS4 phenotype. KRAS/BRAF mutations are strongly correlated with tumour budding suggesting their involvement in the regulation of this process

    Development of a miRNA-based classifier for detection of colorectal cancer molecular subtypes.

    No full text
    Funder: New York Stem Cell Foundation; Id: http://dx.doi.org/10.13039/100003194Previously, colorectal cancer (CRC) has been classified into four distinct molecular subtypes based on transcriptome data. These consensus molecular subtypes (CMSs) have implications for our understanding of tumor heterogeneity and the prognosis of patients. So far, this classification has been based on the use of messenger RNAs (mRNAs), although microRNAs (miRNAs) have also been shown to play a role in tumor heterogeneity and biological differences between CMSs. In contrast to mRNAs, miRNAs have a smaller size and increased stability, facilitating their detection. Therefore, we built a miRNA-based CMS classifier by converting the existing mRNA-based CMS classification using machine learning (training dataset of n = 271). The performance of this miRNA-assigned CMS classifier (CMS-miRaCl) was evaluated in several datasets, achieving an overall accuracy of ~ 0.72 (0.6329-0.7987) in the largest dataset (n = 158). To gain insight into the biological relevance of CMS-miRaCl, we evaluated the most important features in the classifier. We found that miRNAs previously reported to be relevant in microsatellite-instable CRCs or Wnt signaling were important features for CMS-miRaCl. Following further studies to validate its robustness, this miRNA-based alternative might simplify the implementation of CMS classification in clinical workflows

    Development of a miRNA-based classifier for detection of colorectal cancer molecular subtypes

    No full text
    Previously, colorectal cancer (CRC) has been classified into four distinct molecular subtypes based on transcriptome data. These consensus molecular subtypes (CMSs) have implications for our understanding of tumor heterogeneity and the prognosis of patients. So far, this classification has been based on the use of messenger RNAs (mRNAs), although microRNAs (miRNAs) have also been shown to play a role in tumor heterogeneity and biological differences between CMSs. In contrast to mRNAs, miRNAs have a smaller size and increased stability, facilitating their detection. Therefore, we built a miRNA-based CMS classifier by converting the existing mRNA-based CMS classification using machine learning (training dataset of n = 271). The performance of this miRNA-assigned CMS classifier (CMS-miRaCl) was evaluated in several datasets, achieving an overall accuracy of ~ 0.72 (0.6329–0.7987) in the largest dataset (n = 158). To gain insight into the biological relevance of CMS-miRaCl, we evaluated the most important features in the classifier. We found that miRNAs previously reported to be relevant in microsatellite-instable CRCs or Wnt signaling were important features for CMS-miRaCl. Following further studies to validate its robustness, this miRNA-based alternative might simplify the implementation of CMS classification in clinical workflows

    Long-term Survival Update and Extended RAS Mutational Analysis of the CAIRO2 Trial: Addition of Cetuximab to CAPOX/Bevacizumab in Metastatic Colorectal Cancer

    No full text
    Background: Here we present updated survival of the CAIRO2 trial and assessed whether the addition of anti-EGFR to anti-VEGF therapy could still be an effective treatment option for patients with extended RAS/BRAF wildtype and left-sided metastatic colorectal cancer (mCRC). Materials and Methods: Retrospective updated survival and extended RAS and BRAF V600E mutational analysis were performed in the CAIRO2 trial, a multicenter, randomized phase III trial on the effect of adding cetuximab to a combination of capecitabine, oxaliplatin (CAPOX), and bevacizumab in mCRC. Results: Updated survival analysis confirmed that the addition of cetuximab did not provide a benefit on either progression free (PFS) or overall survival (OS) in the intention-to-treat population. With the extended mutational analyses 31 KRAS, 31 NRAS and 12 BRAF V600E additional mutations were found. No benefit of the addition of cetuximab was observed within the extended wildtype group, even when selecting only left-sided tumors (PFS HR 0.96, p = 0.7775). However, compared to the original trial an increase of 6.5 months was seen for patients with both extended wildtype and left-sided tumors (median OS 28.6 months). Conclusion: Adding cetuximab to CAPOX and bevacizumab does not provide clinical benefit in patients with mCRC, even in the extended wildtype group with left-sided tumors. However, in the extended wildtype group we did observe clinically relevant higher survival compared to the initial trial report, indicating that it is important to analyze a broader panel of RAS and BRAF variants using more recent sequencing techniques when assessing survival benefit after anti-EGFR therapy

    Serum-based measurements of stromal activation through ADAM12 associate with poor prognosis in colorectal cancer

    No full text
    Background: Recently it has been recognized that stromal markers could be used as a clinically relevant biomarker for therapy response and prognosis. Here, we report on a serum marker for stromal activation, A Disintegrin and Metalloprotease 12 (ADAM12) in colorectal cancer (CRC). Methods: Using gene expression databases we investigated ADAM12 expression in CRC and delineated the source of ADAM12 expression. The clinical value of ADAM12 was retrospectively assessed in the CAIRO2 trial in metastatic CRC with 235 patients (31% of total cohort), and an independent rectal cancer cohort (n = 20). Results: ADAM12 is expressed by activated CRC associated fibroblasts. In the CAIRO2 trial cohort, ADAM12 serum levels were prognostic (ADAM12 low versus ADAM12 high; median OS 25.3 vs. 17.1 months, HR 1.48 [95% CI 1.11–1.96], P = 0.007). The prognostic potential was specifically high for metastatic rectal cancer (HR 1.78 [95% CI 1.06–3.00], P = 0.030) and mesenchymal subtype tumors (HR 2.12 [95% CI 1.25–3.60], P = 0.004). ADAM12 also showed potential for predicting recurrence in an exploratory analysis of non-metastatic rectal cancers. Conclusions: Here we describe a non-invasive marker for activated stroma in CRC which associates with poor outcome, especially for primary cancers located in the rectum
    corecore