8,237 research outputs found
Extensometer automatically measures elongation in elastomers
Extensometer, with a calibrated shaft, measures the elongation of elastomers and automatically records this distance on a chart. It is adaptable to almost any tensile testing machine and is fabricated at a relatively low cost
Primordial Black Holes, Hawking Radiation and the Early Universe
The 511 keV gamma emission from the galactic core may originate from a high
concentration () of primordial black holes (PBHs) in the core
each of whose Hawking radiation includes positrons per second.
The PBHs we consider are taken as near the lightest with longevity greater than
the age of the universe (mass kg; Schwarzschild radius
fm). These PBHs contribute only a small fraction of cold dark matter,
. This speculative hypothesis, if confirmed implies
the simultaneous discovery of Hawking radiation and an early universe phase
transition.Comment: 4 Page
Development of a bedrest muscle stress apparatus
In attempting further to define the deleterious effects of spaceflight on the human body, measurement systems and techniques were devised to determine the loss of skeletal muscle strength and tone as a result of spaceflight exposure. In order to determine how the muscle degradation process progresses with time during nonuse, a system for measuring muscle stress during bedrest was developed. The Bedrest Muscle Stress Apparatus is configured to slip snugly over the foot board of a standard hospital bed. Data collected with this device correlated well with pre- and post-bedrest data collected with the original skeletal muscle stress apparatus
Detecting Axion-Like Particles With Gamma Ray Telescopes
We propose that axion-like particles (ALPs) with a two-photon vertex,
consistent with all astrophysical and laboratory bounds, may lead to a
detectable signature in the spectra of high-energy gamma ray sources. This
occurs as a result of gamma rays being converted into ALPs in the magnetic
fields of efficient astrophysical accelerators according to the "Hillas
criterion", such as jets of active galactic nuclei or hot spots of radio
galaxies. The discovery of such an effect is possible by GLAST in the 1-100 GeV
range and by ground based gamma ray telescopes in the TeV range.Comment: corrected typos, one plot modified, material rearranged for
clarification. Conclusions unchanged. Matches version published in Phys. Rev.
Let
Probing Exotic Physics With Cosmic Neutrinos
Traditionally, collider experiments have been the primary tool used in
searching for particle physics beyond the Standard Model. In this talk, I will
discuss alternative approaches for exploring exotic physics scenarios using
high energy and ultra-high energy cosmic neutrinos. Such neutrinos can be used
to study interactions at energies higher, and over baselines longer, than those
accessible to colliders. In this way, neutrino astronomy can provide a window
into fundamental physics which is highly complementary to collider techniques.
I will discuss the role of neutrino astronomy in fundamental physics,
considering the use of such techniques in studying several specific scenarios
including low scale gravity models, Standard Model electroweak instanton
induced interactions, decaying neutrinos and quantum decoherence.Comment: 11 pages, 6 figures; For the proceedings of From Colliders To Cosmic
Rays, Prague, Czech Republic, September 7-13, 200
The Indirect Search for Dark Matter with IceCube
We revisit the prospects for IceCube and similar kilometer-scale telescopes
to detect neutrinos produced by the annihilation of weakly interacting massive
dark matter particles (WIMPs) in the Sun. We emphasize that the astrophysics of
the problem is understood; models can be observed or, alternatively, ruled out.
In searching for a WIMP with spin-independent interactions with ordinary
matter, IceCube is only competitive with direct detection experiments if the
WIMP mass is sufficiently large. For spin-dependent interactions IceCube
already has improved the best limits on spin-dependent WIMP cross sections by
two orders of magnitude. This is largely due to the fact that models with
significant spin-dependent couplings to protons are the least constrained and,
at the same time, the most promising because of the efficient capture of WIMPs
in the Sun. We identify models where dark matter particles are beyond the reach
of any planned direct detection experiments while being within reach of
neutrino telescopes. In summary, we find that, even when contemplating recent
direct detection results, neutrino telescopes have the opportunity to play an
important as well as complementary role in the search for particle dark matter.Comment: 17 pages, 10 figures, published in the New Journal of Physics 11
105019 http://www.iop.org/EJ/abstract/1367-2630/11/10/105019, new version
submitted to correct Abstract in origina
Two photon annihilation of Kaluza-Klein dark matter
We investigate the fermionic one-loop cross section for the two photon
annihilation of Kaluza-Klein (KK) dark matter particles in a model of universal
extra dimensions (UED). This process gives a nearly mono-energetic gamma-ray
line with energy equal to the KK dark matter particle mass. We find that the
cross section is large enough that if a continuum signature is detected, the
energy distribution of gamma-rays should end at the particle mass with a peak
that is visible for an energy resolution of the detector at the percent level.
This would give an unmistakable signature of a dark matter origin of the
gamma-rays, and a unique determination of the dark matter particle mass, which
in the case studied should be around 800 GeV. Unlike the situation for
supersymmetric models where the two-gamma peak may or may not be visible
depending on parameters, this feature seems to be quite robust in UED models,
and should be similar in other models where annihilation into fermions is not
helicity suppressed. The observability of the signal still depends on largely
unknown astrophysical parameters related to the structure of the dark matter
halo. If the dark matter near the galactic center is adiabatically contracted
by the central star cluster, or if the dark matter halo has substructure
surviving tidal effects, prospects for detection look promising.Comment: 17 pages, 3 figures; slightly revised versio
Prospects For Identifying Dark Matter With CoGeNT
It has previously been shown that the excess of events reported by the CoGeNT
collaboration could be generated by elastically scattering dark matter
particles with a mass of approximately 5-15 GeV. This mass range is very
similar to that required to generate the annual modulation observed by
DAMA/LIBRA and the gamma rays from the region surrounding the Galactic Center
identified within the data of the Fermi Gamma Ray Space Telescope. To
confidently conclude that CoGeNT's excess is the result of dark matter,
however, further data will likely be needed. In this paper, we make projections
for the first full year of CoGeNT data, and for its planned upgrade. Not only
will this body of data more accurately constrain the spectrum of nuclear recoil
events, and corresponding dark matter parameter space, but will also make it
possible to identify seasonal variations in the rate. In particular, if the
CoGeNT excess is the product of dark matter, then one year of CoGeNT data will
likely reveal an annual modulation with a significance of 2-3. The
planned CoGeNT upgrade will not only detect such an annual modulation with high
significance, but will be capable of measuring the energy spectrum of the
modulation amplitude. These measurements will be essential to irrefutably
confirming a dark matter origin of these events.Comment: 6 pages, 6 figure
- …
