356 research outputs found

    Turbo Warrants under Hybrid Stochastic and Local Volatility

    Get PDF
    This paper considers the pricing of turbo warrants under a hybrid stochastic and local volatility model. The model consists of the constant elasticity of variance model incorporated by a fast fluctuating Ornstein-Uhlenbeck process for stochastic volatility. The sensitive structure of the turbo warrant price is revealed by asymptotic analysis and numerical computation based on the observation that the elasticity of variance controls leverage effects and plays an important role in characterizing various phases of volatile markets

    Scale-up study for ex-vivo expansion of allogeneic natural killer cells in stirred-tank bioreactor

    Get PDF
    Natural killer (NK) cells are a type of lymphocyte in the blood that are responsible for innate and adaptive immune response, and they mature in the liver and bone marrow. Being a key role in host defense system with direct and indirect killing of virus-infected cells or cancer cells, NK cell has been considered an attractive candidate for cancer therapy. Peripheral blood shows the low frequency of NK cells, so ex vivo expansion method is important to obtain sufficient NK cells for therapeutic use. Currently, we successfully developed bioreactor process for NK cell expansion on lab-scale. Stirred-tank bioreactor could be considered as optimal alternative system for large-scale NK cell expansion compared with other ones because it is automated, less labor intensive, scalable, well-controlled and cost-effective. In bioreactor process, agitation is one of important parameters for NK cell expansion because it is necessary to provide homogenous culture conditions. So we defined effects of agitation in bioreactor and figured out an optimum condition. After that scale-up studies were carried out with manufacturing-scale bioreactor based on these results. The results in terms of growth rate, viability cytotoxicity and purity, were comparable with lab-scale

    Structural and Biochemical Bases for the Inhibition of Autophagy and Apoptosis by Viral BCL-2 of Murine γ-Herpesvirus 68

    Get PDF
    All gammaherpesviruses express homologues of antiapoptotic B-cell lymphoma-2 (BCL-2) to counter the clearance of infected cells by host antiviral defense machineries. To gain insights into the action mechanisms of these viral BCL-2 proteins, we carried out structural and biochemical analyses on the interactions of M11, a viral BCL-2 of murine γ-herpesvirus 68, with a fragment of proautophagic Beclin1 and BCL-2 homology 3 (BH3) domain-containing peptides derived from an array of proapoptotic BCL-2 family proteins. Mainly through hydrophobic interactions, M11 bound the BH3-like domain of Beclin1 with a dissociation constant of 40 nanomole, a markedly tighter affinity compared to the 1.7 micromolar binding affinity between cellular BCL-2 and Beclin1. Consistently, M11 inhibited autophagy more efficiently than BCL-2 in NIH3T3 cells. M11 also interacted tightly with a BH3 domain peptide of BAK and those of the upstream BH3-only proteins BIM, BID, BMF, PUMA, and Noxa, but weakly with that of BAX. These results collectively suggest that M11 potently inhibits Beclin1 in addition to broadly neutralizing the proapoptotic BCL-2 family in a similar but distinctive way from cellular BCL-2, and that the Beclin1-mediated autophagy may be a main target of the virus

    Hysteroscopic Resection of the Vaginal Septum in Uterus Didelphys with Obstructed Hemivagina: A Case Report

    Get PDF
    Uterus didelphys with obstructed hemivagina and ipsilateral renal agenesis is a rare congenital anomaly. Excision of the obstructed vaginal septum is the treatment of choice for symptom relief and the preservation of reproductive capability. A 14-yr-old girl complained of persistent vaginal spotting following each menstruation. Pelvic magnetic resonance imaging revealed a uterus didelphys with left hematocolpos and ipsilateral renal agenesis. Instead of conventional transvaginal excision of the vaginal septum, we used hysteroscopic excision under transabdominal ultrasonographic guidance to preserve the integrity of the hymen. The postoperative course was uneventful, and clinical symptoms were completely resolved after this intervention. Resectoscopic excision of the vaginal septum was found to be easy, safe, effective, and appropriate for young women as it preserved hymen integrity. We believe that this is the first Korean report on the use of a hysteroscopy for vaginal septum resection in a patient with uterus didelphys with obstructed hemivagina

    Characterization of White Electroluminescent Devices Fabricated Using Conjugated Polymer Blends

    Get PDF
    We report the characterization of white light emitting devices fabricated using conjugated polymer blends. Blue emissive poly[9,9-bis(4'-n-octyloxyphenyl)fluorene-2,7-diyl-co-10-(2'-ethylhexyl)phenothiazine-3,7-diyl] [poly(BOPF-co-PTZ)] and red emissive poly(2-(2'-ethylhexyloxy)-5-methoxy-1,4-phenylenevinylene) (MEH-PPV) were used in the blends. The inefficient energy transfer between these blue and red light emitting polymers (previously deduced from the photoluminscence (PL) spectra of the blend films) enables the production of white light emission through control of the blend ratio. The PL and electroluminescence (EL) emission spectra of the blend systems were found to vary with the blend ratio. The EL devices were fabricated in the indium tin oxide [poly(3,4-ethylenedioxy-thiophene)-poly(styrenesulfonate)] (ITO/PEDOT-PSS)blend/LiF/Al configuration, and white light emission was obtained for one of the tested blend ratios

    Physicochemical factors that affect electroporation of lung cancer and normal cell lines

    Get PDF
    Electroporation is used for cancer therapy to efficiently destroy cancer tissues by transferring anticancer drugs into cancer cells or by irreversible tumor ablation without resealing pores. There is growing interest in the electroporation method for the treatment of lung cancer, which has the highest mortality rate among cancers. Improving the cancer cell selectivity has the potential to expand its use. However, the factors that influence the cell selectivity of electroporation are debatable. We aimed to identify the important factors that influence the efficiency of electroporation in lung cells. The electropermeabilization of lung cancer cells (H460, A549, and HCC1588) and normal lung cells (MRCS, WI26 and L132) was evaluated by the transfer of fluorescence dyes. We found that membrane permeabilization increased as cell size, membrane stiffness, resting transmembrane potential, and lipid cholesterol ratio increased. Among them, lipid composition was found to be the most relevant factor in the electroporation of lung cells. Our results provide insight into the differences between lung cancer cells and normal lung cells and provide a basis for enhancing the sensitivity of lung cancers cells to electroporation. (C) 2019 Elsevier Inc. All rights reserved.N

    Silicon@porous nitrogen-doped carbon spheres through a bottom-up approach are highly robust lithium-ion battery anodes

    Get PDF
    Due to its excellent capacity, around 4000 mA h g(-1), silicon has been recognized as one of the most promising lithium-ion battery anodes, especially for future large-scale applications including electrical vehicles and utility power grids. Nevertheless, Si suffers from a short cycle life as well as limitations for scalable electrode fabrication. Herein, we report a novel design for highly robust and scalable Si anodes: Si nanoparticles embedded in porous nitrogen-doped carbon spheres (NCSs). The porous nature of NCSs buffers the volume changes of Si nanoparticles and thus resolves critical issues of Si anode operations, such as pulverization, vulnerable contacts between Si and carbon conductors, and an unstable solid-electrolyte interphase. The unique electrode structure exhibits outstanding performance with a gravimetric capacity as high as 1579 mA h g(-1) at a C/10 rate based on the mass of both Si and C, a cycle life of 300 cycles with 94% capacity retention, as well as a discharge rate capability of 6 min while retaining a capacity of 702 mA h g(-1). Significantly, the coulombic efficiencies of this structure reach 99.99%. The assembled structure suggests a design principle for high capacity alloying electrodes that suffer from volume changes during battery operations.
    corecore