2,602 research outputs found

    Automated optical identification of a large complete northern hemisphere sample of flat spectrum radio sources with S_6cm > 200 mJy

    Full text link
    This paper describes the automated optical APM identification of radio sources from the Jodrell Bank - VLA Astrometric Survey (JVAS), as used for the search for distant radio-loud quasars. The sample has been used to investigate possible relations between optical and radio properties of flat spectrum radio sources. From the 915 sources in the sample, 756 have an optical APM identification at a red (e) and/or blue (o) plate,resulting in an identification fraction of 83% with a completeness and reliability of 98% and 99% respectively. About 20% are optically identified with extended APM objects on the red plates, e.g. galaxies. However the distinction between galaxies and quasars can not be done properly near the magnitude limit of the POSS-I plates. The identification fraction appears to decrease from >90% for sources with a 5 GHz flux density of >1 Jy, to <80% for sources at 0.2 Jy. The identification fraction, in particular that for unresolved quasars, is found to be lower for sources with steeper radio spectra. In agreement with previous studies, we find that the quasars at low radio flux density levels also tend to have fainter optical magnitudes, although there is a large spread. In addition, objects with a steep radio-to-optical spectral index are found to be mainly highly polarised quasars, supporting the idea that in these objects the polarised synchrotron component is more prominent. It is shown that the large spread in radio-to-optical spectral index is possibly caused by source to source variations in the Doppler boosting of the synchrotron component [Abridged].Comment: LaTex, 17 pages, 5 gif figures, 4 tables. Accepted for publication in MNRAS. High resolution figures can be found at http://www.roe.ac.uk/~ignas

    The ASCA spectrum of the z=4.72 blazar, GB 1428+4217

    Get PDF
    The X-ray luminous quasar GB 1428+4217 at redshift 4.72 has been observed with ASCA. The observed 0.5-10 keV flux is 3.2E-12 erg/s/cm2. We report here on the intrinsic 4-57 keV X-ray spectrum, which is very flat (photon index of 1.29). We find no evidence for flux variability within the ASCA dataset or between it and ROSAT data. We show that the overall spectral energy distribution of GB 1428+4217 is similar to that of lower redshift MeV blazars and present models which fit the available data. The Doppler beaming factor is likely to be at least 8. We speculate on the number density of such high redshift blazars, which must contain rapidly-formed massive black holes.Comment: 5 pages, 3 Postscript figures, to appear in MNRA

    Empowering and assisting natural human mobility: The simbiosis walker

    Get PDF
    This paper presents the complete development of the Simbiosis Smart Walker. The device is equipped with a set of sensor subsystems to acquire user-machine interaction forces and the temporal evolution of user's feet during gait. The authors present an adaptive filtering technique used for the identification and separation of different components found on the human-machine interaction forces. This technique allowed isolating the components related with the navigational commands and developing a Fuzzy logic controller to guide the device. The Smart Walker was clinically validated at the Spinal Cord Injury Hospital of Toledo - Spain, presenting great acceptability by spinal chord injury patients and clinical staf

    PMN J0525-3343: soft X-ray spectral flattening in a blazar at z=4.4

    Get PDF
    We report optical, radio and X-ray observations of a new distant blazar, PMN J0525-3343, at a redshift of 4.4. The X-ray spectrum measured from ASCA and BeppoSAX flattens below a few keV, in a manner similar to the spectra of two other z>4 blazars, GB 1428+4217 (z=4.72) reported by Boller et al and RXJ 1028.6-0844 (z=4.28) by Yuan et al. The spectrum is well fitted by a power-law continuum which is either absorbed or breaks at a few keV. An intrinsic column density corresponding to 2 x 10^23 H-atoms cm-2 at solar abundance is required by the absorption model. This is however a million times greater than the neutral hydrogen, or dust, column density implied by the optical spectrum, which covers the rest-frame UV emission of the blazar nucleus. We discuss the problems raised and suggest that, unless there is intrinsic flattening in the spectral distribution of the particles/seed photons producing X-rays via inverse Compton scattering, the most plausible solution is a warm absorber close to the active nucleus.Comment: 7 pages, 7 figures; MNRAS, in pres

    A Synoptic, Multiwavelength Analysis of a Large Quasar Sample

    Full text link
    We present variability and multi-wavelength photometric information for the 933 known quasars in the QUEST Variability Survey. These quasars are grouped into variable and non-variable populations based on measured variability confidence levels. In a time-limited synoptic survey, we detect an anti-correlation between redshift and the likelihood of variability. Our comparison of variability likelihood to radio, IR, and X-ray data is consistent with earlier quasar studies. Using already-known quasars as a template, we introduce a light curve morphology algorithm that provides an efficient method for discriminating variable quasars from periodic variable objects in the absence of spectroscopic information. The establishment of statistically robust trends and efficient, non-spectroscopic selection algorithms will aid in quasar identification and categorization in upcoming massive synoptic surveys. Finally, we report on three interesting variable quasars, including variability confirmation of the BL Lac candidate PKS 1222+037.Comment: AJ, accepted for publication 15 Dec 200

    A generalized quantum microcanonical ensemble

    Full text link
    We discuss a generalized quantum microcanonical ensemble. It describes isolated systems that are not necessarily in an eigenstate of the Hamilton operator. Statistical averages are obtained by a combination of a time average and a maximum entropy argument to resolve the lack of knowledge about initial conditions. As a result, statistical averages of linear observables coincide with values obtained in the canonical ensemble. Non-canonical averages can be obtained by taking into account conserved quantities which are non-linear functions of the microstate.Comment: improved version, new titl

    Quantum tunneling as a classical anomaly

    Full text link
    Classical mechanics is a singular theory in that real-energy classical particles can never enter classically forbidden regions. However, if one regulates classical mechanics by allowing the energy E of a particle to be complex, the particle exhibits quantum-like behavior: Complex-energy classical particles can travel between classically allowed regions separated by potential barriers. When Im(E) -> 0, the classical tunneling probabilities persist. Hence, one can interpret quantum tunneling as an anomaly. A numerical comparison of complex classical tunneling probabilities with quantum tunneling probabilities leads to the conjecture that as ReE increases, complex classical tunneling probabilities approach the corresponding quantum probabilities. Thus, this work attempts to generalize the Bohr correspondence principle from classically allowed to classically forbidden regions.Comment: 12 pages, 7 figure

    Observation of a low-lying neutron-unbound state in 19C

    Full text link
    Proton removal reactions from a secondary 22N beam were utilized to populate unbound states in neutron-rich carbon isotopes. Neutrons were measured with the Modular Neutron Array (MoNA) in coincidence with carbon fragments. A resonance with a decay energy of 76(14) keV was observed in the system 18C+n corresponding to a state in 19C at an excitation energy of 653(95)keV. This resonance could correspond to the first 5/2+ state which was recently speculated to be unbound in order to describe 1n and 2n removal cross section measurements from 20C.Comment: accepted for publication in Nucl. Phys.
    corecore