122 research outputs found
Activation of the D prostanoid 1 receptor suppresses asthma by modulation of lung dendritic cell function and induction of regulatory T cells
Prostaglandins (PGs) can enhance or suppress inflammation by acting on different receptors expressed by hematopoietic and nonhematopoietic cells. Prostaglandin D2 binds to the D prostanoid (DP)1 and DP2 receptor and is seen as a critical mediator of asthma causing vasodilation, bronchoconstriction, and inflammatory cell influx. Here we show that inhalation of a selective DP1 agonist suppresses the cardinal features of asthma by targeting the function of lung dendritic cells (DCs). In mice treated with DP1 agonist or receiving DP1 agonist-treated DCs, there was an increase in Foxp3+ CD4+ regulatory T cells that suppressed inflammation in an interleukin 10–dependent way. These effects of DP1 agonist on DCs were mediated by cyclic AMP–dependent protein kinase A. We furthermore show that activation of DP1 by an endogenous ligand inhibits airway inflammation as chimeric mice with selective hematopoietic loss of DP1 had strongly enhanced airway inflammation and antigen-pulsed DCs lacking DP1 were better at inducing airway T helper 2 responses in the lung. Triggering DP1 on DCs is an important mechanism to induce regulatory T cells and to control the extent of airway inflammation. This pathway could be exploited to design novel treatments for asthma
Pro-inflammatory cytokines induce c-fos expression followed by IL-6 release in human airway smooth muscle cells
BACKGROUND: Airway smooth muscle (ASM) is considered to be a target for mediators released during airway inflammation. AIMS: To investigate the expression of c-fos, a constituent of the transcription factor activator protein-1, in human ASM cells. In addition, to measure the release of interleukin (IL)-6 into the conditioned medium of stimulated ASM cells, as well as DNA biosynthesis and changes in cell number. METHODS: Serum-deprived human ASM cells in the G0/G1 phase were stimulated with the pro-inflammatory cytokines; tumour necrosis factor-alpha, IL-1beta, IL-5 and IL-6. The expression of mRNA encoding the proto-oncogene c-fos was measured by Northern blot analysis. Cell proliferation was assessed by [3H]-thymidine incorporation assays and cell counting, and IL-6 levels in cell-conditioned medium were measured by enzyme-linked immunosorbent assay. RESULTS: All of the cytokines investigated induced a rapid (within 1 h) and transient increase in the expression of mRNA encoding c-fos, followed by the expression and enhanced release of IL-6. Cell proliferation remained unchanged in cytokine-stimulated cells. CONCLUSIONS: Cytokine-induced c-fos expression in human ASM cells could be described as a marker of cell 'activation'. The possible association of these results with airway inflammation, through secondary intracellular mechanisms such as cytokine production, is discussed
Effects of fluticasone propionate on methacholine dose-response curves in nonsmoking atopic asthmatics
Methacholine is frequently used to determine bronchial hyperresponsiveness
(BHR) and to generate dose-response curves. These curves are characterized
by a threshold (provocative concentration of methacholine producing a 20%
fall in forced expiratory volume in one second (PC20) = sensitivity),
slope (reactivity) and maximal response (plateau). We investigated the
efficacy of 12 weeks of treatment with 1,000 microg fluticasone propionate
in a double-blind, placebo-controlled study in 33 atopic asthmatics. The
outcome measures used were the influence on BHR and the different indices
of the methacholine dose-response (MDR) curve. After 2 weeks run-in,
baseline lung function data were obtained and a MDR curve was measured
with doubling concentrations of the methacholine from 0.03 to 256 mg x
mL(-1). MDR curves were repeated after 6 and 12 weeks. A recently
developed, sigmoid cumulative Gaussian distribution function was fitted to
the data. Although sensitivity was obtained by linear interpolation of two
successive log2 concentrations, reactivity, plateau and the effective
concentration at 50% of the plateau value (EC50) were obtained as best fit
parameters. In the fluticasone group, significant changes occurred after 6
weeks with respect to means of PC20 (an increase of 3.4 doubling doses),
plateau value fall in forced expiratory volume in one second (FEV1) (from
58% at randomization to 41% at 6 weeks) and baseline FEV1 (from 3.46 to
3.75 L) in contrast to the placebo group. Stabilization occurred after 12
weeks. Changes for reactivity were less marked, whereas changes in log,
EC50 were not significantly different between the groups. We conclude that
fluticasone is very effective in decreasing the maximal airway narrowing
response and in increasing PC20. However, it is likely that part of this
increase is related to the decrease of the plateau of maximal response
COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function
Background: Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature cells that accumulates in tumour-bearing hosts. These cells are induced by tumour-derived factors (e.g. prostaglandins) and have a critical role in immune suppression. MDSC suppress T and NK cell function via increased expression of arginase I and production of reactive oxygen species (ROS) and nitric oxide (NO). Immune suppression by MDSC was found to be one of the main factors for immunotherapy insufficiency. Here we investigate if the in vivo immunoregulatory function of MDSC can be reversed by inhibiting prostaglandin synthesis by specific COX-2 inhibition focussing on ROS production by MDSC subtypes. In addition, we determined if dietary celecoxib treatment leads to refinement of immunotherapeutic strategies.Methods: MDSC numbers and function were analysed during tumour progression in a murine model for mesothelioma. Mice were inoculated with mesothelioma tumour cells and treated with cyclooxygenase-2 (COX-2) inhibitor celecoxib, either as single agent or in combination with dendritic cell-based immunotherapy.Results: We found that large numbers of infiltrating MDSC co-localise with COX-2 expression in those areas where tumour growth takes place. Celecoxib reduced prostaglandin E2 levels in vitro and in vivo. Treatment of tumour-bearing mice with dietary celecoxib prevented the local and systemic expansion of all MDSC subtypes. T
In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma
Although dendritic cells (DCs) play an important role in sensitization to inhaled allergens, their function in ongoing T helper (Th)2 cell–mediated eosinophilic airway inflammation underlying bronchial asthma is currently unknown. Here, we show in an ovalbumin (OVA)-driven murine asthma model that airway DCs acquire a mature phenotype and interact with CD4+ T cells within sites of peribronchial and perivascular inflammation. To study whether DCs contributed to inflammation, we depleted DCs from the airways of CD11c-diphtheria toxin (DT) receptor transgenic mice during the OVA aerosol challenge. Airway administration of DT depleted CD11c+ DCs and alveolar macrophages and abolished the characteristic features of asthma, including eosinophilic inflammation, goblet cell hyperplasia, and bronchial hyperreactivity. In the absence of CD11c+ cells, endogenous or adoptively transferred CD4+ Th2 cells did not produce interleukin (IL)-4, IL-5, and IL-13 in response to OVA aerosol. In CD11c-depleted mice, eosinophilic inflammation and Th2 cytokine secretion were restored by adoptive transfer of CD11c+ DCs, but not alveolar macrophages. These findings identify lung DCs as key proinflammatory cells that are necessary and sufficient for Th2 cell stimulation during ongoing airway inflammation
Essential Role of Lung Plasmacytoid Dendritic Cells in Preventing Asthmatic Reactions to Harmless Inhaled Antigen
Tolerance is the usual outcome of inhalation of harmless antigen, yet T helper (Th) type 2 cell sensitization to inhaled allergens induced by dendritic cells (DCs) is common in atopic asthma. Here, we show that both myeloid (m) and plasmacytoid (p) DCs take up inhaled antigen in the lung and present it in an immunogenic or tolerogenic form to draining node T cells. Strikingly, depletion of pDCs during inhalation of normally inert antigen led to immunoglobulin E sensitization, airway eosinophilia, goblet cell hyperplasia, and Th2 cell cytokine production, cardinal features of asthma. Furthermore, adoptive transfer of pDCs before sensitization prevented disease in a mouse asthma model. On a functional level, pDCs did not induce T cell division but suppressed the generation of effector T cells induced by mDCs. These studies show that pDCs provide intrinsic protection against inflammatory responses to harmless antigen. Therapies exploiting pDC function might be clinically effective in preventing the development of asthma
Hydrocortisone-induced increase of PDGF β-receptor expression in a human malignant mesothelioma cell line
The effect of hydrocortisone (HC) on PDGF β-receptor expression was studied in the human malignant mesothelioma cell line Mero-14. HC was found to induce a time- and dose-dependent increase of PDGF β-receptor mRNA. Nuclear run off analysis revealed that HC induced increased transcription of the PDGF β-receptor gene. The expression of PDGF β-receptor protein was also elevated by HC as demonstrated with an immunoblotting assay. However, the number of PDGF-BB binding sites on the cell surface of Mero-14 remained unchanged upon HC treatment. These results suggest that steroid hormones can regulate PDGF receptor expression in vivo
Evidence for local dendritic cell activation in pulmonary sarcoidosis
<p>Abstract</p> <p>Background</p> <p>Sarcoidosis is a granulomatous disease characterized by a seemingly exaggerated immune response against a difficult to discern antigen. Dendritic cells (DCs) are pivotal antigen presenting cells thought to play an important role in the pathogenesis. Paradoxically, decreased DC immune reactivity was reported in blood samples from pulmonary sarcoidosis patients. However, functional data on lung DCs in sarcoidosis are lacking. We hypothesized that at the site of disease DCs are mature, immunocompetent and involved in granuloma formation.</p> <p>Methods</p> <p>We analyzed myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) in broncho-alveolar lavage (BAL) and blood from newly diagnosed, untreated pulmonary sarcoidosis patients and healthy controls using 9-color flowcytometry. DCs, isolated from BAL using flowcytometric sorting (mDCs) or cultured from monocytes (mo-DCs), were functionally assessed in a mixed leukocyte reaction with naïve allogeneic CD4+ T cells. Using Immunohistochemistry, location and activation status of CD11c<sup>+</sup>DCs was assessed in mucosal airway biopsies.</p> <p>Results</p> <p>mDCs in BAL, but not in blood, from sarcoidosis patients were increased in number when compared with mDCs from healthy controls. mDCs purified from BAL of sarcoidosis patients induced T cell proliferation and differentiation and did not show diminished immune reactivity. Mo-DCs from patients induced increased TNFα release in co-cultures with naïve allogeneic CD4<sup>+ </sup>T cells. Finally, immunohistochemical analyses revealed increased numbers of mature CD86<sup>+ </sup>DCs in granuloma-containing airway mucosal biopsies from sarcoidosis patients.</p> <p>Conclusion</p> <p>Taken together, these finding implicate increased local DC activation in granuloma formation or maintenance in pulmonary sarcoidosis.</p
Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells
Alum (aluminum hydroxide) is the most widely used adjuvant in human vaccines, but the mechanism of its adjuvanticity remains unknown. In vitro studies showed no stimulatory effects on dendritic cells (DCs). In the absence of adjuvant, Ag was taken up by lymph node (LN)–resident DCs that acquired soluble Ag via afferent lymphatics, whereas after injection of alum, Ag was taken up, processed, and presented by inflammatory monocytes that migrated from the peritoneum, thus becoming inflammatory DCs that induced a persistent Th2 response. The enhancing effects of alum on both cellular and humoral immunity were completely abolished when CD11c+ monocytes and DCs were conditionally depleted during immunization. Mechanistically, DC-driven responses were abolished in MyD88-deficient mice and after uricase treatment, implying the induction of uric acid. These findings suggest that alum adjuvant is immunogenic by exploiting “nature's adjuvant,” the inflammatory DC through induction of the endogenous danger signal uric acid
- …