38 research outputs found
Aging dynamics in reentrant ferromagnet: CuCoCl-FeCl graphite bi-intercalation compound
Aging dynamics of a reentrant ferromagnet
CuCoCl-FeCl graphite bi-intercalation compound has
been studied using AC and DC magnetic susceptibility. This compound undergoes
successive transitions at the transition temperatures ( K) and
( K). The relaxation rate exhibits a characteristic
peak at close to a wait time below , indicating that
the aging phenomena occur in both the reentrant spin glass (RSG) phase below
and the ferromagnetic (FM) phase between and . The
relaxation rate () in the FM phase
exhibits two peaks around and a time much shorter than under
the positive -shift aging, indicating a partial rejuvenation of domains. The
aging state in the FM phase is fragile against a weak magnetic-field
perturbation. The time () dependence of around is well approximated by a stretched exponential relaxation:
. The exponent depends on
, , and . The relaxation time () exhibits a
local maximum around 5 K, reflecting a chaotic nature of the FM phase. It
drastically increases with decreasing temperature below .Comment: 16 pages,16 figures, submitted to Physical Review
Landau-cutkosky rules, scale invariance, and the marginal fermi liquid
With the aid of the reduced graph expansion relating different order multiple interaction vertices and the exact spectral densities, we show that a strongly coupled Fermi system can allow solutions for the spectral density which scale under simultaneous scale changes in the energy and temperature. This implies a functional form for the spectral density which falls off as a power [mu] of frequency between 0 and -1. The theory describes ZkF = 0 quasiparticles with a Fermi surface consistent with Luttinger's theorem while the spin and charge susceptibilities have imaginary parts of the form ([omega]/T)T1+2[mu] at low energies. The approach reproduces some features of both the Luttinger liquid and marginal Fermi liquid phenomenologies.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29889/1/0000242.pd
Fluctuations and Instabilities of Ferromagnetic Domain Wall pairs in an External Magnetic Field
Soliton excitations and their stability in anisotropic quasi-1D ferromagnets
are analyzed analytically. In the presence of an external magnetic field, the
lowest lying topological excitations are shown to be either soliton-soliton or
soliton-antisoliton pairs. In ferromagnetic samples of macro- or mesoscopic
size, these configurations correspond to twisted or untwisted pairs of Bloch
walls. It is shown that the fluctuations around these configurations are
governed by the same set of operators. The soliton-antisoliton pair has exactly
one unstable mode and thus represents a critical nucleus for thermally
activated magnetization reversal in effectively one-dimensional systems. The
soliton-soliton pair is stable for small external fields but becomes unstable
for large magnetic fields. From the detailed expression of this instability
threshold and an analysis of nonlocal demagnetizing effects it is shown that
the relative chirality of domain walls can be detected experimentally in thin
ferromagnetic films. The static properties of the present model are equivalent
to those of a nonlinear sigma-model with anisotropies. In the limit of large
hard-axis anisotropy the model reduces to a double sine-Gordon model.Comment: 15 pages RevTex 3.0 (twocolumn), 9 figures available on request, to
appear in Phys Rev B, Dec (1994
Microscopic observation of magnon bound states and their dynamics
More than eighty years ago, H. Bethe pointed out the existence of bound
states of elementary spin waves in one-dimensional quantum magnets. To date,
identifying signatures of such magnon bound states has remained a subject of
intense theoretical research while their detection has proved challenging for
experiments. Ultracold atoms offer an ideal setting to reveal such bound states
by tracking the spin dynamics after a local quantum quench with single-spin and
single-site resolution. Here we report on the direct observation of two-magnon
bound states using in-situ correlation measurements in a one-dimensional
Heisenberg spin chain realized with ultracold bosonic atoms in an optical
lattice. We observe the quantum walk of free and bound magnon states through
time-resolved measurements of the two spin impurities. The increased effective
mass of the compound magnon state results in slower spin dynamics as compared
to single magnon excitations. In our measurements, we also determine the decay
time of bound magnons, which is most likely limited by scattering on thermal
fluctuations in the system. Our results open a new pathway for studying
fundamental properties of quantum magnets and, more generally, properties of
interacting impurities in quantum many-body systems.Comment: 8 pages, 7 figure
Efimov effect in quantum magnets
Physics is said to be universal when it emerges regardless of the underlying
microscopic details. A prominent example is the Efimov effect, which predicts
the emergence of an infinite tower of three-body bound states obeying discrete
scale invariance when the particles interact resonantly. Because of its
universality and peculiarity, the Efimov effect has been the subject of
extensive research in chemical, atomic, nuclear and particle physics for
decades. Here we employ an anisotropic Heisenberg model to show that collective
excitations in quantum magnets (magnons) also exhibit the Efimov effect. We
locate anisotropy-induced two-magnon resonances, compute binding energies of
three magnons and find that they fit into the universal scaling law. We propose
several approaches to experimentally realize the Efimov effect in quantum
magnets, where the emergent Efimov states of magnons can be observed with
commonly used spectroscopic measurements. Our study thus opens up new avenues
for universal few-body physics in condensed matter systems.Comment: 7 pages, 5 figures; published versio
DYNAMIC RESPONSE OF THE RE-ENTRANT INSULATING SPIN GLASS Eu0.54Sr0.46S
The time decay of the thermoremanent magnetization, σTRM (t), of Eu0.54Sr0.46S was measured in the spin-glass phase. Two time responses were found, for short times : σTRM (t) decays as a power law ; for long times, σTRM (t) decays as a stretched exponential. The time separating the two regimes increases with waiting time