16 research outputs found
Intoxicação por monofluoroacetato em animais
O monofluoroacetato (MF) ou ácido monofluoroacético é utilizado na Austrália e Nova Zelândia no controle populacional de mamíferos nativos ou exóticos. O uso desse composto é proibido no Brasil, devido ao risco de intoxicação de seres humanos e de animais, uma vez que a substância permanece estável por décadas. No Brasil casos recentes de intoxicação criminosa ou acidental têm sido registrados. MF foi identificado em diversas plantas tóxicas, cuja ingestão determina "morte súbita"; de bovinos na África do Sul, Austrália e no Brasil. O modo de ação dessa substância baseia-se na formação do fluorocitrato, seu metabólito ativo, que bloqueia competitivamente a aconitase e o ciclo de Krebs, o que reduz produção de ATP. As espécies animais têm sido classificadas nas quatro Categorias em função do efeito provocado por MF: (I) no coração, (II) no sistema nervoso central (III) sobre o coração e sistema nervoso central ou (IV) com sintomatologia atípica. Neste trabalho, apresenta-se uma revisão crítica atualizada sobre essa substância. O diagnóstico da intoxicação por MF é realizado pelo histórico de ingestão do tóxico, pelos achados clínicos e confirmado por exame toxicológico. Uma forma peculiar de degeneração hidrópico-vacuolar das células epiteliais dos túbulos uriníferos contorcidos distais tem sido considerada como característica dessa intoxicação em algumas espécies. O tratamento da intoxicação por MF é um desafio, pois ainda não se conhece um agente capaz de reverte-la de maneira eficaz; o desfecho geralmente é fata
The artificial intelligence-based model ANORAK improves histopathological grading of lung adenocarcinoma
The introduction of the International Association for the Study of Lung Cancer grading system has furthered interest in histopathological grading for risk stratification in lung adenocarcinoma. Complex morphology and high intratumoral heterogeneity present challenges to pathologists, prompting the development of artificial intelligence (AI) methods. Here we developed ANORAK (pyrAmid pooliNg crOss stReam Attention networK), encoding multiresolution inputs with an attention mechanism, to delineate growth patterns from hematoxylin and eosin-stained slides. In 1,372 lung adenocarcinomas across four independent cohorts, AI-based grading was prognostic of disease-free survival, and further assisted pathologists by consistently improving prognostication in stage I tumors. Tumors with discrepant patterns between AI and pathologists had notably higher intratumoral heterogeneity. Furthermore, ANORAK facilitates the morphological and spatial assessment of the acinar pattern, capturing acinus variations with pattern transition. Collectively, our AI method enabled the precision quantification and morphology investigation of growth patterns, reflecting intratumoral histological transitions in lung adenocarcinoma
MHC Hammer reveals genetic and non-genetic HLA disruption in cancer evolution
Disruption of the class I human leukocyte antigen (HLA) molecules has important implications for immune evasion and tumor evolution. We developed major histocompatibility complex loss of heterozygosity (LOH), allele-specific mutation and measurement of expression and repression (MHC Hammer). We identified extensive variability in HLA allelic expression and pervasive HLA alternative splicing in normal lung and breast tissue. In lung TRACERx and lung and breast TCGA cohorts, 61% of lung adenocarcinoma (LUAD), 76% of lung squamous cell carcinoma (LUSC) and 35% of estrogen receptor-positive (ER+) cancers harbored class I HLA transcriptional repression, while HLA tumor-enriched alternative splicing occurred in 31%, 11% and 15% of LUAD, LUSC and ER+ cancers. Consistent with the importance of HLA dysfunction in tumor evolution, in LUADs, HLA LOH was associated with metastasis and LUAD primary tumor regions seeding a metastasis had a lower effective neoantigen burden than non-seeding regions. These data highlight the extent and importance of HLA transcriptomic disruption, including repression and alternative splicing in cancer evolution
Evolutionary characterization of lung adenocarcinoma morphology in TRACERx
Lung adenocarcinomas (LUADs) display a broad histological spectrum from low-grade lepidic tumors through to mid-grade acinar and papillary and high-grade solid, cribriform and micropapillary tumors. How morphology reflects tumor evolution and disease progression is poorly understood. Whole-exome sequencing data generated from 805 primary tumor regions and 121 paired metastatic samples across 248 LUADs from the TRACERx 421 cohort, together with RNA-sequencing data from 463 primary tumor regions, were integrated with detailed whole-tumor and regional histopathological analysis. Tumors with predominantly high-grade patterns showed increased chromosomal complexity, with higher burden of loss of heterozygosity and subclonal somatic copy number alterations. Individual regions in predominantly high-grade pattern tumors exhibited higher proliferation and lower clonal diversity, potentially reflecting large recent subclonal expansions. Co-occurrence of truncal loss of chromosomes 3p and 3q was enriched in predominantly low-/mid-grade tumors, while purely undifferentiated solid-pattern tumors had a higher frequency of truncal arm or focal 3q gains and SMARCA4 gene alterations compared with mixed-pattern tumors with a solid component, suggesting distinct evolutionary trajectories. Clonal evolution analysis revealed that tumors tend to evolve toward higher-grade patterns. The presence of micropapillary pattern and ‘tumor spread through air spaces’ were associated with intrathoracic recurrence, in contrast to the presence of solid/cribriform patterns, necrosis and preoperative circulating tumor DNA detection, which were associated with extra-thoracic recurrence. These data provide insights into the relationship between LUAD morphology, the underlying evolutionary genomic landscape, and clinical and anatomical relapse risk
Genomic–transcriptomic evolution in lung cancer and metastasis
Intratumour heterogeneity (ITH) fuels lung cancer evolution, which leads to immune evasion and resistance to therapy1. Here, using paired whole-exome and RNA sequencing data, we investigate intratumour transcriptomic diversity in 354 non-small cell lung cancer tumours from 347 out of the first 421 patients prospectively recruited into the TRACERx study2,3. Analyses of 947 tumour regions, representing both primary and metastatic disease, alongside 96 tumour-adjacent normal tissue samples implicate the transcriptome as a major source of phenotypic variation. Gene expression levels and ITH relate to patterns of positive and negative selection during tumour evolution. We observe frequent copy number-independent allele-specific expression that is linked to epigenomic dysfunction. Allele-specific expression can also result in genomic–transcriptomic parallel evolution, which converges on cancer gene disruption. We extract signatures of RNA single-base substitutions and link their aetiology to the activity of the RNA-editing enzymes ADAR and APOBEC3A, thereby revealing otherwise undetected ongoing APOBEC activity in tumours. Characterizing the transcriptomes of primary–metastatic tumour pairs, we combine multiple machine-learning approaches that leverage genomic and transcriptomic variables to link metastasis-seeding potential to the evolutionary context of mutations and increased proliferation within primary tumour regions. These results highlight the interplay between the genome and transcriptome in influencing ITH, lung cancer evolution and metastasis
A local human Vδ1 T cell population is associated with survival in nonsmall-cell lung cancer
Murine tissues harbor signature γδ T cell compartments with profound yet differential impacts on carcinogenesis. Conversely, human tissue-resident γδ cells are less well defined. In the present study, we show that human lung tissues harbor a resident Vδ1 γδ T cell population. Moreover, we demonstrate that Vδ1 T cells with resident memory and effector memory phenotypes were enriched in lung tumors compared with nontumor lung tissues. Intratumoral Vδ1 T cells possessed stem-like features and were skewed toward cytolysis and helper T cell type 1 function, akin to intratumoral natural killer and CD8+ T cells considered beneficial to the patient. Indeed, ongoing remission post-surgery was significantly associated with the numbers of CD45RA−CD27− effector memory Vδ1 T cells in tumors and, most strikingly, with the numbers of CD103+ tissue-resident Vδ1 T cells in nonmalignant lung tissues. Our findings offer basic insights into human body surface immunology that collectively support integrating Vδ1 T cell biology into immunotherapeutic strategies for nonsmall cell lung cancer
Lung adenocarcinoma promotion by air pollutants
A complete understanding of how exposure to environmental substances promotes cancer formation is lacking. More than 70 years ago, tumorigenesis was proposed to occur in a two-step process: an initiating step that induces mutations in healthy cells, followed by a promoter step that triggers cancer development1. Here we propose that environmental particulate matter measuring ≤2.5 μm (PM2.5), known to be associated with lung cancer risk, promotes lung cancer by acting on cells that harbour pre-existing oncogenic mutations in healthy lung tissue. Focusing on EGFR-driven lung cancer, which is more common in never-smokers or light smokers, we found a significant association between PM2.5 levels and the incidence of lung cancer for 32,957 EGFR-driven lung cancer cases in four within-country cohorts. Functional mouse models revealed that air pollutants cause an influx of macrophages into the lung and release of interleukin-1β. This process results in a progenitor-like cell state within EGFR mutant lung alveolar type II epithelial cells that fuels tumorigenesis. Ultradeep mutational profiling of histologically normal lung tissue from 295 individuals across 3 clinical cohorts revealed oncogenic EGFR and KRAS driver mutations in 18% and 53% of healthy tissue samples, respectively. These findings collectively support a tumour-promoting role for PM2.5 air pollutants and provide impetus for public health policy initiatives to address air pollution to reduce disease burden
Effectiveness of clinical rotations as a learning environment for achieving competences
Competences are becoming more and more prominent in undergraduate medical education. Workplace learning is regarded as crucial in competence learning. Assuming that effective learning depends on adequate supervision, feedback and assessment, the authors studied the occurrence of these three variables in relation to a set of clinical competences. They surveyed students at the end of their rotation in surgery, internal medicine or paediatrics asking them to indicate for each competence how often they had received observed and unobserved supervision, the seniority of the person who provided most of their feedback, and whether the competence was addressed in formal assessments. Supervision was found to be scarce and mostly unobserved. Senior staff did not provide much feedback, and assessment mostly targeted patient-related competences. For all variables, the variation between students exceeded that between disciplines. We conclude that conditions for adequate workplace learning are poorly met and that clerkship experiences show huge inter-student variation
Factoren die het dioxinegehalte in biologische eieren kunnen beïnvloeden
De resultaten van dit onderzoek geven een indicatie van mogelijke oorzaken van een te hoog dioxinegehalte in biologische eieren. Aanleiding voor dit onderzoek is het voornemen tot het intrekken van de ontheffing voor biologische eieren van de EU-norm voor dioxines in eieren van maximaal 3 pg TEQ/gram eivet. De biologische en scharrelbedrijven hadden tot 10 januari 2004 de tijd gekregen om aan deze norm te voldoen. In het voorjaar van 2004 is de ingangsdatum van deze nieuwe wettelijke norm verschoven naar 1 januari 2005. Uit het onderzoek blijkt dat de meeste, met name grotere bedrijven kunnen voldoen aan de norm. Er lijkt samenhang tussen de positieve status van een bedrijf en de volgende bedrijfsfactoren: de bedrijfsgrootte (het betreft veelal kleine(re) bedrijven), het niet verstrekken van vitamine- en/of andere gezondheidsbevorderende preparaten, het wel verstrekken van groenvoer, en een flinke brand in de omgeving in de afgelopen 10 jaar
Coordinating AgMIP data and models across global and regional scales for 1.5°C and 2.0°C assessments
The Agricultural Model Intercomparison and Improvement Project (AgMIP) has developed novel methods for Coordinated Global and Regional Assessments (CGRA) of agriculture and food security in a changing world. The present study aims to perform a proof of concept of the CGRA to demonstrate advantages and challenges of the proposed framework. This effort responds to the request by the UN Framework Convention on Climate Change (UNFCCC) for the implications of limiting global temperature increases to 1.5°C and 2.0°C above pre-industrial conditions. The protocols for the 1.5°C/2.0°C assessment establish explicit and testable linkages across disciplines and scales, connecting outputs and inputs from the Shared Socio-economic Pathways (SSPs), Representative Agricultural Pathways (RAPs), Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) and Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble scenarios, global gridded crop models, global agricultural economics models, site-based crop models and within-country regional economics models. The CGRA consistently links disciplines, models and scales in order to track the complex chain of climate impacts and identify key vulnerabilities, feedbacks and uncertainties in managing future risk. CGRA proof-of-concept results show that, at the global scale, there are mixed areas of positive and negative simulated wheat and maize yield changes, with declines in some breadbasket regions, at both 1.5°C and 2.0°C. Declines are especially evident in simulations that do not take into account direct CO2 effects on crops. These projected global yield changes mostly resulted in increases in prices and areas of wheat and maize in two global economics models. Regional simulations for 1.5°C and 2.0°C using site-based crop models had mixed results depending on the region and the crop. In conjunction with price changes from the global economics models, productivity declines in the Punjab, Pakistan, resulted in an increase in vulnerable households and the poverty rate