6 research outputs found

    Variable expression of subclinical phenotypes instead of reduced penetrance in families with mild triphalangeal thumb phenotypes

    Get PDF
    Backgroun: The of zone of polarizing activity regulatory sequence (ZRS) is a regulatory element residing in intron 5 of LMBR1 and regulates Sonic Hedgehog expression in the limb bud. Variants in the ZRS are generally fully penetrant and can cause triphalangeal thumb (TPT) and polydactyly in affected families. Objective: In thisreport, we describe two families with mild phenotypical presentation Methods: Weperformed a field study for clinical evaluation and sequenced the ZRS for variantsusing Sanger sequencing. Results: In familyI, a novel 165A>G variant in the ZRS(g.156584405A>G, GRCh37/Hg19) was found. Infamily II, we identified a 295T>C variant inthe ZRS (g.156584535T>C, GRCh37/Hg19). Family members of both families who werepresumed to be unaffected shared the variant in the ZRS with affected familymembers, suggesting reduced penetrance of the genotype. However, clinicalexamination of these unaffected family members revealed minor anomalies likebroad thumbs and lack of thumb opposition. As the phenotype in affected patients is remarkably mild, we suggest that theseZRS variants are minimally disruptive for Sonic Hedgehog expression andtherefore can result in subclinical phenotypes. Conclusion: Our study underlines the importance of accurate clinical examination and appropriate genetic counselling in families with mild cases of TPT

    Cancer-prone syndrome of mosaic variegated aneuploidy and total premature chromatid separation: Report of five infants

    Get PDF
    Five infants (two girls and three boys) from four families all had severe pre- and post-natal growth retardation, profound developmental delay, microcephaly, hypoplasia of the brain with Dandy-Walker complex or other posterior fossa malformations, and developed uncontrollable clonic seizures. Four infants developed Wilms tumors, and one showed cystic lesions in bilateral kidneys. All five infants showed variegated mosaic aneuploidy in cultured lymphocytes. In two infants whose chromosomes were prepared by us, 48.5%-83.2% lymphocytes showed total premature chromatid separation (PCS). Their parents had 3.5%-41.7% of their lymphocytes in total PCS. The remaining three infants and their parents, whose chromosomes were prepared at outside laboratories, tended to show lower frequencies of total PCS. Another five infants reported with the disorder were reviewed together with the five infants we described. Together, their clinical and cytogenetic manifestations were similar enough to suggest a syndrome. Seven of the 10 infants developed proven or probable Wilms tumors. The age at diagnosis of the tumors was younger than usual at 2-16 months. The tumors were bilateral in four infants and unilateral in three infants, and cystic changes were present in six infants. Two infants developed botryoid rhabdomyosarcoma. The carriers of the syndrome are thus liable to tumorigenesis. The possible role of mitotic checkpoint defects, proven in two infants with the syndrome (Matsuura et al. [2000: Am J Hum Genet 69:483-486]), was discussed in connection with tumor development and progression

    Autosomal dominant inheritance of left ventricular outflow tract obstruction

    No full text
    Most nonsyndromic congenital heart malformations (CHMs) in humans are multifactorial in origin, although an increasing number of monogenic cases have been reported recently. We describe here four new families with presumed autosomal dominant inheritance of left ventricular outflow tract obstruction (LVOTO), consisting of hypoplastic left heart (HLHS) or left ventricle (HLV), aortic valve stenosis (AS) and bicuspid aortic valve (BAV), hypoplastic aortic arch (HAA), and coarctation of the aorta (CoA). LVOTO in these families shows a wide clinical spectrum with some family members having severe anomalies such as hypoplastic left heart, and others only minor anomalies such as mild aortic valve stenosis. This supports the suggestion that all anomalies of the LVOTO spectrum are developmentally related and can be caused by a single gene defect

    Identification of intragenic exon deletions and duplication of TCF12 by whole genome or targeted sequencing as a cause of TCF12-related craniosynostosis

    No full text
    TCF12-related craniosynostosis can be caused by small heterozygous loss-of-function mutations in TCF12. Large intragenic rearrangements, however, have not been described yet. Here, we present the identification of four large rearrangements in TCF12 causing TCF12-related craniosynostosis. Whole genome sequencing was applied on the DNA of eighteen index-cases with coronal synostosis and their family members (forty-three samples in total). The data were analyzed using an autosomal dominant disease model. Structural variant analysis reported intragenic exon deletions (of sizes 84.9 kb, 8.6 kb and 5.4 kb) in TCF12 in three different families. The results were confirmed by deletion-specific PCR and dideoxy-sequence analysis. Separately, targeted sequencing of the TCF12 genomic region in a patient with coronal synostosis identified a tandem duplication of 11.3 kb. The pathogenic effect of this duplication was confirmed by cDNA analysis. These findings indicate the importance of screening for larger rearrangements in patients suspected to have TCF12-related craniosynostosis. This article is protected by copyright. All rights reserved

    The SMAD-binding domain of SKI:A hotspot for de novo mutations causing Shprintzen-Goldberg syndrome

    No full text
    Shprintzen–Goldberg syndrome (SGS) is a rare, systemic connective tissue disorder characterized by craniofacial, skeletal, and cardiovascular manifestations that show a significant overlap with the features observed in the Marfan (MFS) and Loeys–Dietz syndrome (LDS). A distinguishing observation in SGS patients is the presence of intellectual disability, although not all patients in this series present this finding. Recently, SGS was shown to be due to mutations in the SKI gene, encoding the oncoprotein SKI, a repressor of TGFβ activity. Here, we report eight recurrent and three novel SKI mutations in eleven SGS patients. All were heterozygous missense mutations located in the R-SMAD binding domain, except for one novel in-frame deletion affecting the DHD domain. Adding our new findings to the existing data clearly reveals a mutational hotspot, with 73% (24 out of 33) of the hitherto described unrelated patients having mutations in a stretch of five SKI residues (from p.(Ser31) to p.(Pro35)). This implicates that the initial molecular testing could be focused on mutation analysis of the first half of exon 1 of SKI. As the majority of the known mutations are located in the R-SMAD binding domain of SKI, our study further emphasizes the importance of TGFβ signaling in the pathogenesis of SGS
    corecore