40 research outputs found

    The Effect of Surface Irregularities on Wing Drag. II - Lap Joints

    Get PDF
    Tests have been made in the NACA 8-foot high-speed wind tunnel of the drag caused by four types of lap joint. The tests were made on an airfoil of NACA 23012 section and 5-foot chord and covered in a range of speeds from 80 to 500 miles per hour and lift coefficients from 0 to 0.30. The increases in profile drag caused by representative arrangements of laps varied from 4 to 9%. When there were protruding rivet heads on the surface, the addition of laps increased the drag only slightly. Laps on the forward part of a wing increased the drag considerably more than those farther back

    The Effect of Surface Irregularities on Wing Drag. I. Rivets and Spot Welds

    Get PDF
    Tests have been conducted in the NACA 8-foot high-speed wind tunnel to determine the effect of exposed rivet heads and spot welds on wing drag. Most of the tests were made with an airfoil of 5-foot chord. The air speed was varied from 80 to 500 miles per hour and the lift coefficient from 0 to 0.30. The increases in the drag of the 5-foot airfoil varied from 6%, due to countersunk rivets, to 27%, due to 3/32-inch brazier-head rivets, with the rivets in a representative arrangement. The drag increases caused by protruding rivet heads were roughly proportional to the height of the heads. With the front row of rivets well forward, changes in spanwise pitch had negligible effects on drag unless the pitch was more than 2.5% of the chord. Data are presented for evaluating the drag reduction attained by removing rivets from the forward part of the wing surface; for example, it is shown that over 70% of the rivet drag is caused by the rivets on the forward 30% of the airfoil in a typical case

    The Effects of Surface Waviness and of Rib Stitching on Wing Drag

    Get PDF
    Surface waviness and rib stitching have been investigated as part of a series of tests to determine the effects on wing drag of common surface irregularities. The tests were made in the N.A.C.A. 8-foot high-speed wind tunnel at Reynolds Numbers up to 17,000,000. The results of the tests showed that the waviness common to airplane wings will cause no serious increase in drag unless the waviness exists on the forward part of the wing, where it may cause premature transition or premature compressibility effects. Waves 3 inches wide and 0.048 inch high, for example, increased the drag 1 percent when they covered the rear 67 percent of both surfaces and 10 percent when they covered the rear 92 percent. A single wave 3 inches wide and only 0.020 inch high at the 10.5-percent-chord point on the upper surface caused transition to occur on the wave and increased the drag 6 percent. Rib stitching increased the drag 7 percent when the rib spacing was 6 inches; the drag increment was proportional to the number of ribs for wider spacings. About one-third of the increase was due to premature transition at the forward ends of the stitching

    Tests of an NACA 66,2-420 Airfoil of 5-Foot Chord at High Speed, Special Report

    Get PDF
    This report covers tests of a 5-foot model of the NACA 66,2-420 low-drag airfoil at high speeds including the critical compressibility speed. Section coefficients of lift, drag, and pitching moment, and extensive pressure-distribution data are presented. The section drag coefficient at the design lift coefficient of 0.4 increased from 0.0042 at low speeds to 0.0052 at a Mach number of 0.56 (390 mph at 25,000 ft altitude). The critical Mach number was about 0.60. The results cover a Reynold number range from 4 millions to 17 millions

    Full-scale Wind-tunnel Research on Tail Buffeting and Wing-fuselage Interference of a Low-wing Monoplane

    Get PDF
    Some preliminary results of full scale wind tunnel testing to determine the best means of reducing the tail buffeting and wing-fuselage interference of a low-wing monoplane are given. Data indicating the effects of an engine cowling, fillets, auxiliary airfoils of short span, reflexes trailing edge, propeller slipstream, and various combinations of these features are included. The best all-round results were obtained by the use of fillets together with the National Advisory Committee for Aeronautics (NACA) cowling. This combination reduced the tail buffeting oscillations to one-fourth of their original amplitudes, increased the maximum lift 11 percent, decreased the minimum drag 9 percent, and increased the maximum ratio of lift to drag 19 percent

    The problem of longitudinal stability and control at high speeds

    Get PDF
    In high-speed dives many airplanes exhibit a dangerous tendency to continue diving in spite of the application of large control forces. Wind-tunnel tests have confirmed that these difficulties are not peculiar to any particular configuration, so that the problem is of interest to all designers of high-speed airplanes. The purpose of this report is to acquaint designers with the cause of difficulties and with the means now known for their alleviation

    Wing-Fuselage Interference, Tail Buffeting, and Air Flow About the Tail of a Low-Wing Monoplane

    Get PDF
    This report presents the results of wind tunnel tests on a Mcdonnell Douglas airplane to determine the wing-fuselage interference of a low-wing monoplane. The tests included a study of tail buffeting and the air flow in the region of the tail. The airplane was tested with and without the propeller slipstream, both in the original condition and with several devices designed to reduce or eliminate tail buffeting. The devices used were wing-fuselage fillets, a NACA cowling, reflexed trailing edge of the wing, and stub auxiliary airfoils

    Full-Scale Wind-Tunnel Tests of a PCA-2 Autogiro Rotor

    Get PDF
    This report presents the results of force tests on and air-flow surveys near PCA-2 autogiro rotor in the NACA full-scale wind tunnel. The force tests were made at three pitch settings and several rotor speeds; the effect of fairing protuberances on the rotor blade was determined. Induced downwash and yaw angles were determined at low tip-speed ratios in a plane 1 1/2 feet above the path of the blade tips. The results show that the maximum l/d of the rotor cannot be appreciably increased by increasing the blade pitch angle above about 4.5 degrees at the blade tip; that the protuberances on the blades cause more than 5 percent of the total rotor drag; and that the rotor center-of-pressure travel is very small

    Adding 6 months of androgen deprivation therapy to postoperative radiotherapy for prostate cancer: a comparison of short-course versus no androgen deprivation therapy in the RADICALS-HD randomised controlled trial

    Get PDF
    Background Previous evidence indicates that adjuvant, short-course androgen deprivation therapy (ADT) improves metastasis-free survival when given with primary radiotherapy for intermediate-risk and high-risk localised prostate cancer. However, the value of ADT with postoperative radiotherapy after radical prostatectomy is unclear. Methods RADICALS-HD was an international randomised controlled trial to test the efficacy of ADT used in combination with postoperative radiotherapy for prostate cancer. Key eligibility criteria were indication for radiotherapy after radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to radiotherapy alone (no ADT) or radiotherapy with 6 months of ADT (short-course ADT), using monthly subcutaneous gonadotropin-releasing hormone analogue injections, daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as distant metastasis arising from prostate cancer or death from any cause. Standard survival analysis methods were used, accounting for randomisation stratification factors. The trial had 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 80% to 86% (hazard ratio [HR] 0·67). Analyses followed the intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov, NCT00541047. Findings Between Nov 22, 2007, and June 29, 2015, 1480 patients (median age 66 years [IQR 61–69]) were randomly assigned to receive no ADT (n=737) or short-course ADT (n=743) in addition to postoperative radiotherapy at 121 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 9·0 years (IQR 7·1–10·1), metastasis-free survival events were reported for 268 participants (142 in the no ADT group and 126 in the short-course ADT group; HR 0·886 [95% CI 0·688–1·140], p=0·35). 10-year metastasis-free survival was 79·2% (95% CI 75·4–82·5) in the no ADT group and 80·4% (76·6–83·6) in the short-course ADT group. Toxicity of grade 3 or higher was reported for 121 (17%) of 737 participants in the no ADT group and 100 (14%) of 743 in the short-course ADT group (p=0·15), with no treatment-related deaths. Interpretation Metastatic disease is uncommon following postoperative bed radiotherapy after radical prostatectomy. Adding 6 months of ADT to this radiotherapy did not improve metastasis-free survival compared with no ADT. These findings do not support the use of short-course ADT with postoperative radiotherapy in this patient population
    corecore