37 research outputs found

    A new cross section measurement of reactions induced by 3He-particles on a carbon target

    Get PDF
    International audienceThe production of intense beams of light radioactive nuclei can be achieved at the SPIRAL2 facility using intense stable beams accelerated by the driver accelerator and impinging on light targets. The isotope 14O is identied to be of high interest for future experiments. The excitation function of the production reaction 12C(3He, n)14O was measured between 7 and 35 MeV. Results are compared with literature data. As an additional result, we report the rst cross-section measurement for the 12C(3He, +n)10C reaction. Based on this new result, the potential in-target 14O yield at SPIRAL2 was estimated: 2.4x1011 pps, for 1 mA of 3He at 35 MeV. This is a factor 140 higher than the in-target yield at SPIRAL1

    Investigation of neutron-deficient isotopes 160^{160}Yb, 161^{161}Yb, 163^{163}Yb and 165^{165}Yb

    No full text
    A new isotope /sup 161/Yb(T/sub 1/2/=4.2 min) has been identified. The decay of /sup 160/Yb(T/sub 1/2/=4.8 min), /sup 163/Yb(T/sub 1/2/=11.4 min) and /sup 155/Yb(T/sub 1/2/=9.8 min) has been investigated with Ge (Li), Si(Li) and NaI(Tl) detectors, a toroidal beta -spectrometer and magnetic beta -spectrographs using isobarically separated samples produced by the YASNAPP facility. A decay scheme for /sup 160/Yb, /sup 163/Yb and /sup 165/Yb are proposed

    The cross-section data from neutron activation experiments on niobium in the NPI p-7Li quasi-monoenergetic neutron field

    No full text
    The reaction of protons on 7Li target produces the high-energy quasi- monoenergetic neutron spectrum with the tail to lower energies. Proton energies of 19.8, 25.1, 27.6, 30.1, 32.6, 35.0 and 37.4 MeV were used to obtain quasi-monoenergetic neutrons with energies of 18, 21.6, 24.8, 27.6, 30.3, 32.9 and 35.6 MeV, respectively. Nb cross-section data for neutron energies higher than 22.5 MeV do not exist in the literature. Nb is the important material for fusion applications (IFMIF) as well. The variable-energy proton beam of NPI cyclotron is utilized for the production of neutron field using thin lithium target. The carbon backing serves as the beam stopper. The system permits to produce neutron flux density about 109  n/cm2/s in peak at 30 MeV neutron energy. The niobium foils of 15 mm in diameter and approx. 0.75 g weight were activated. The nuclear spectroscopy methods with HPGe detector technique were used to obtain the activities of produced isotopes. The large set of neutron energies used in the experiment allows us to make the complex study of the cross-section values. The reactions (n,2n), (n,3n), (n,4n), (n,He3), (n,α) and (n,2nα) are studied. The cross-sections data of the (n,4n) and (n,2nα) are obtained for the first time. The cross-sections of (n,2n) and (n,α) reactions for higher neutron energies are strongly influenced by low energy tail of neutron spectra. This effect is discussed. The results are compared with the EAF-2007 library

    Spectral flux of the p-7Li(C) Q-M neutron source measured by proton recoil telescope

    No full text
    The cyclotron-based fast neutron source at NPI produces mono-energetic neutron fields up to 35 MeV neutron energy using the p + 7Li(carbon backing) reactions. To be applied for activation cross-section measurements, not only the intensity of neutron peak, but also the contribution of low-energy continuum in the spectra must be well determined. Simulations of the spectral flux from present source at a position of irradiated samples were performed using CYRIC TOF-data validated in the present work against LA150h by calculations with the transport Monte Carlo code MCNPX. Simulated spectra were tested by absolute measurements using a proton-recoil telescope technique. The recoil-proton spectrometer consisted of a shielded scattering chamber with polyethylene and carbon radiators and the ΔE1-ΔE2-E telescope of silicon-surface detectors located to the neutron beam axis at 45° in the laboratory system. Si-detectors were handled by usual data acquisition system. Dead-time – and pulse-overlap losses of events were determined from the count rate of pulse generator registered during duty cycle of accelerator operation. The proton beam charge and data were taken in the list mode for later replay and analysis. The calculations for 7Li(p,n) and 12C(p,n) reactions reasonably reproduce CYRIC TOF neutron source spectra. The influence of neutron source set-up (proton beam dimensions, 7Li-foil, carbon stopper, cooling medium, target support/chamber and the geometry-arrangement of irradiated sample) on the spectral flux is discussed in details

    Spectral flux of the p- 7

    No full text
    The cyclotron-based fast neutron source at NPI produces mono-energetic neutron fields up to 35 MeV neutron energy using the p + 7Li(carbon backing) reactions. To be applied for activation cross-section measurements, not only the intensity of neutron peak, but also the contribution of low-energy continuum in the spectra must be well determined. Simulations of the spectral flux from present source at a position of irradiated samples were performed using CYRIC TOF-data validated in the present work against LA150h by calculations with the transport Monte Carlo code MCNPX. Simulated spectra were tested by absolute measurements using a proton-recoil telescope technique. The recoil-proton spectrometer consisted of a shielded scattering chamber with polyethylene and carbon radiators and the ΔE1-ΔE2-E telescope of silicon-surface detectors located to the neutron beam axis at 45° in the laboratory system. Si-detectors were handled by usual data acquisition system. Dead-time – and pulse-overlap losses of events were determined from the count rate of pulse generator registered during duty cycle of accelerator operation. The proton beam charge and data were taken in the list mode for later replay and analysis. The calculations for 7Li(p,n) and 12C(p,n) reactions reasonably reproduce CYRIC TOF neutron source spectra. The influence of neutron source set-up (proton beam dimensions, 7Li-foil, carbon stopper, cooling medium, target support/chamber and the geometry-arrangement of irradiated sample) on the spectral flux is discussed in details
    corecore