85 research outputs found

    Effects of Feeding Conjugated Linoleic Acid to Nursery Pigs of Low- and High-Health Status on Growth and Immune Competence

    Get PDF
    Early weaned pigs allotted either into “clean” or into “dirty” environmental conditions and potentially subject to high or low levels of antigen exposure, respectively, were used to determine the impact of 0, .67, 1.33, and 2% conjugated linoleic acid (CLA-60) on the immune status and growth performance. CLA levels modulate immune status in weanling pigs by decreasing the CD4 + :CD8 + ratio due to an increase in CD8 + and a decrease in CD4 + %. If the result of that ratio is favorable to the numerator, it means that the animal has a greater immune potential to fight against bacterial-type infections (serum antibodies produced by plasma cells) than against viral or other intracellular-type infections. The increase in CD8 + indicates a potential increase in cytotoxic T lymphocytes. These cells play an important role in the development of the response of the animal against viral infections. CLA caused an increase in alpha-1-acylglycoprotein (AGP), a serum acute-phase protein produced in the liver in response to stimulation from specific cytokines. No statistical significance in feed efficiency was attributed to CLA. Pigs placed into the clean environment utilized feed more efficiently than those placed in the dirty environment. Growth performance was shown to be independent of dietary treatments, but after a period of 42 days, pigs fed CLA become more viral immune competent than control animals

    The Role of T cell PPAR γ in mice with experimental inflammatory bowel disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Peroxisome proliferator-activated receptor γ (PPAR γ) is a nuclear receptor whose activation has been shown to modulate macrophage and T cell-mediated inflammation. The objective of this study was to investigate the mechanisms by which the deletion of PPAR γ in T cells modulates immune cell distribution and colonic gene expression and the severity of experimental IBD.</p> <p>Methods</p> <p>PPAR γ flfl; CD4 Cre<sup>+ </sup>(CD4cre) or Cre- (WT) mice were challenged with 2.5% dextran sodium sulfate in their drinking water for 0, 2, or 7 days. Mice were scored on disease severity both clinically and histopathologically. Flow cytometry was used to assess lymphocyte and macrophage populations in the blood, spleen, and mesenteric lymph nodes (MLN). Global gene expression in colonic mucosa was profiled using Affymetrix microarrays.</p> <p>Results</p> <p>The deficiency of PPAR γ in T cells accelerated the onset of disease and body weight loss. Examination of colon histopathology revealed significantly greater epithelial erosion, leukocyte infiltration, and mucosal thickening in the CD4cre mice on day 7. CD4cre mice had more CD8<sup>+ </sup>T cells than WT mice and fewer CD4<sup>+</sup>FoxP3<sup>+ </sup>regulatory T cells (Treg) and IL10<sup>+</sup>CD4<sup>+ </sup>T cells in blood and MLN, respectively. Transcriptomic profiling revealed around 3000 genes being transcriptionally altered as a result of DSS challenge in CD4cre mice. These included up-regulated mRNA expression of adhesion molecules, proinflammatory cytokines interleukin-6 (IL-6) and IL-1β, and suppressor of cytokine signaling 3 (SOCS-3) on day 7. Gene set enrichment analysis (GSEA) showed that the ribosome and Krebs cycle pathways were downregulated while the apoptosis pathway was upregulated in colons of mice lacking PPAR γ in T cells.</p> <p>Conclusions</p> <p>The expression of PPAR γ in T cells is involved in preventing gut inflammation by regulating colonic expression of adhesion molecules and inflammatory mediators at later stages of disease while favoring the recruitment of Treg to the mucosal inductive sites.</p

    Modulation of hepatic PPAR expression during Ft LVS LPS-induced protection from Francisella tularensis LVS infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been shown previously that administration of <it>Francisella tularensis </it>(<it>Ft</it>) Live Vaccine Strain (LVS) lipopolysaccharide (LPS) protects mice against subsequent challenge with <it>Ft </it>LVS and blunts the pro-inflammatory cytokine response.</p> <p>Methods</p> <p>To further investigate the molecular mechanisms that underlie <it>Ft </it>LVS LPS-mediated protection, we profiled global hepatic gene expression following <it>Ft </it>LVS LPS or saline pre-treatment and subsequent <it>Ft </it>LVS challenge using Affymetrix arrays.</p> <p>Results</p> <p>A large number of genes (> 3,000) were differentially expressed at 48 hours post-infection. The degree of modulation of inflammatory genes by infection was clearly attenuated by pre-treatment with <it>Ft </it>LVS LPS in the surviving mice. However, <it>Ft </it>LVS LPS alone had a subtle effect on the gene expression profile of the uninfected mice. By employing gene set enrichment analysis, we discovered significant up-regulation of the fatty acid metabolism pathway, which is regulated by peroxisome proliferator activated receptors (PPARs).</p> <p>Conclusions</p> <p>We hypothesize that the LPS-induced blunting of pro-inflammatory response in mouse is, in part, mediated by PPARs (α and γ).</p

    Computational Modeling-Based Discovery of Novel Classes of Anti-Inflammatory Drugs That Target Lanthionine Synthetase C-Like Protein 2

    Get PDF
    Background: Lanthionine synthetase component C-like protein 2 (LANCL2) is a member of the eukaryotic lanthionine synthetase component C-Like protein family involved in signal transduction and insulin sensitization. Recently, LANCL2 is a target for the binding and signaling of abscisic acid (ABA), a plant hormone with anti-diabetic and anti-inflammatory effects. Methodology/Principal Findings: The goal of this study was to determine the role of LANCL2 as a potential therapeutic target for developing novel drugs and nutraceuticals against inflammatory diseases. Previously, we performed homology modeling to construct a three-dimensional structure of LANCL2 using the crystal structure of lanthionine synthetase component C-like protein 1 (LANCL1) as a template. Using this model, structure-based virtual screening was performed using compounds from NCI (National Cancer Institute) Diversity Set II, ChemBridge, ZINC natural products, and FDAapproved drugs databases. Several potential ligands were identified using molecular docking. In order to validate the antiinflammatory efficacy of the top ranked compound (NSC61610) in the NCI Diversity Set II, a series of in vitro and pre-clinical efficacy studies were performed using a mouse model of dextran sodium sulfate (DSS)-induced colitis. Our findings showed that the lead compound, NSC61610, activated peroxisome proliferator-activated receptor gamma in a LANCL2- and adenylate cyclase/cAMP dependent manner in vitro and ameliorated experimental colitis by down-modulating colonic inflammatory gene expression and favoring regulatory T cell responses

    Probiotic Bacteria Produce Conjugated Linoleic Acid Locally in the Gut That Targets Macrophage PPAR γ to Suppress Colitis

    Get PDF
    Inflammatory bowel disease (IBD) therapies are modestly successful and associated with significant side effects. Thus, the investigation of novel approaches to prevent colitis is important. Probiotic bacteria can produce immunoregulatory metabolites in vitro such as conjugated linoleic acid (CLA), a polyunsaturated fatty acid with potent anti-inflammatory effects. This study aimed to investigate the cellular and molecular mechanisms underlying the anti-inflammatory efficacy of probiotic bacteria using a mouse model of colitis. The immune modulatory mechanisms of VSL#3 probiotic bacteria and CLA were investigated in a mouse model of DSS colitis. Colonic specimens were collected for histopathology, gene expression and flow cytometry analyses. Immune cell subsets in the mesenteric lymph nodes (MLN), spleen, blood and colonic lamina propria cells were phenotypically and functionally characterized. Fecal samples and colonic contents were collected to determine the effect of VSL#3 and CLA on gut microbial diversity and CLA production. CLA and VSL#3 treatment ameliorated colitis and decreased colonic bacterial diversity, a finding that correlated with decreased gut pathology. Colonic CLA concentrations were increased in response to probiotic bacterial treatment, but without systemic distribution in blood. VSL#3 and CLA decreased macrophage accumulation in the MLN of mice with DSS colitis. The loss of PPAR γ in myeloid cells abrogated the protective effect of probiotic bacteria and CLA in mice with DSS colitis. Probiotic bacteria modulate gut microbial diversity and favor local production of CLA in the colon that targets myeloid cell PPAR γ to suppress colitis

    Gamma-Linolenic and Stearidonic Acids Are Required for Basal Immunity in Caenorhabditis elegans through Their Effects on p38 MAP Kinase Activity

    Get PDF
    Polyunsaturated fatty acids (PUFAs) form a class of essential micronutrients that play a vital role in development, cardiovascular health, and immunity. The influence of lipids on the immune response is both complex and diverse, with multiple studies pointing to the beneficial effects of long-chain fatty acids in immunity. However, the mechanisms through which PUFAs modulate innate immunity and the effects of PUFA deficiencies on innate immune functions remain to be clarified. Using the Caenorhabditis elegans–Pseudomonas aeruginosa host–pathogen system, we present genetic evidence that a Δ6-desaturase FAT-3, through its two 18-carbon products—gamma-linolenic acid (GLA, 18:3n6) and stearidonic acid (SDA, 18:4n3), but not the 20-carbon PUFAs arachidonic acid (AA, 20:4n6) and eicosapentaenoic acid (EPA, 20:5n3)—is required for basal innate immunity in vivo. Deficiencies in GLA and SDA result in increased susceptibility to bacterial infection, which is associated with reduced basal expression of a number of immune-specific genes—including spp-1, lys-7, and lys-2—that encode antimicrobial peptides. GLA and SDA are required to maintain basal activity of the p38 MAP kinase pathway, which plays important roles in protecting metazoan animals from infections and oxidative stress. Transcriptional and functional analyses of fat-3–regulated genes revealed that fat-3 is required in the intestine to regulate the expression of infection- and stress-response genes, and that distinct sets of genes are specifically required for immune function and oxidative stress response. Our study thus uncovers a mechanism by which these 18-carbon PUFAs affect basal innate immune function and, consequently, the ability of an organism to defend itself against bacterial infections. The conservation of p38 MAP kinase signaling in both stress and immune responses further encourages exploring the function of GLA and SDA in humans

    A gut feeling of the PXR, PPAR and NF-kappaB connection.

    No full text
    Bowel diseases reveal the complex interplay of sensing and signalling pathways in maintaining healthy homeostasis of the intestine. Recent studies of the xenobiotic nuclear receptor, pregnane X receptor and the inflammatory mediator nuclear transcription factor kappaB (NF-kappaB) reveal a functional link between xenobiotic neutralization and inflammation and explain how certain xenobiotics can affect the immune response. Furthermore, another nuclear receptor, peroxisome proliferator-activated receptor gamma (PPAR gamma) has been shown to produce beneficial effects in experimental inflammatory bowel diseases by repression of NF-kappaB thereby reducing inflammation, whilst its close relative PPAR beta/delta appears at a central position in signalling pathways involved in the progression of colon cancer. Recently accumulated knowledge on the action of these nuclear receptors and NF-kappaB in intestinal homeostasis may provide the rationale for the development of innovative treatment strategies with selective receptor modulators

    Effects of Feeding Conjugated Linoleic Acid to Nursery Pigs of Low- and High-Health Status on Growth and Immune Competence

    Get PDF
    Early weaned pigs allotted either into “clean” or into “dirty” environmental conditions and potentially subject to high or low levels of antigen exposure, respectively, were used to determine the impact of 0, .67, 1.33, and 2% conjugated linoleic acid (CLA-60) on the immune status and growth performance. CLA levels modulate immune status in weanling pigs by decreasing the CD4 + :CD8 + ratio due to an increase in CD8 + and a decrease in CD4 + %. If the result of that ratio is favorable to the numerator, it means that the animal has a greater immune potential to fight against bacterial-type infections (serum antibodies produced by plasma cells) than against viral or other intracellular-type infections. The increase in CD8 + indicates a potential increase in cytotoxic T lymphocytes. These cells play an important role in the development of the response of the animal against viral infections. CLA caused an increase in alpha-1-acylglycoprotein (AGP), a serum acute-phase protein produced in the liver in response to stimulation from specific cytokines. No statistical significance in feed efficiency was attributed to CLA. Pigs placed into the clean environment utilized feed more efficiently than those placed in the dirty environment. Growth performance was shown to be independent of dietary treatments, but after a period of 42 days, pigs fed CLA become more viral immune competent than control animals.</p
    corecore