1,621 research outputs found
Dendritic side-branching with anisotropic viscous fingering
We studied dendritic side-branching mechanism in the experiment of
anisotropic viscous fingering. We measured the time dependence of growth speed
of side-branch and the envelop of side-branches. We found that the speed of
side-branch gets to be faster than one of the stem and the growth exponent of
the speed changes at a certain time. The envelope of side-branches is
represented as Y ~ X^1.47.Comment: 8 pages, 8 figures, to submited in J. Crystal Growt
Jets and Jet Multiplicities in High Energy Photon-Nucleon Inetraction:
We discuss the theory of jet events in high-energy photon-proton interactions
using a model which gives a good description of the data available on total
inelastic cross sections up to =210 GeV. We show how to
calculate the jet cross sections and jet multiplicities and give predictions
for these quantities for energies appropriate for experiments at the HERA
collider and for very high energy cosmic ray observations.Comment: 12 pages + 4 figs, MAD/TH/92-8, submitted to Phys. Rev. D(Rapid
Communications), figs. available on request from [email protected]
Long-distance entanglement-based quantum key distribution over optical fiber
We report the first entanglement-based quantum key distribution (QKD) experiment over a 100-km optical fiber. We used superconducting single photon detectors based on NbN nanowires that provide high-speed single photon detection for the 1.5-µm telecom band, an efficient entangled photon pair source that consists of a fiber coupled periodically poled lithium niobate waveguide and ultra low loss filters, and planar lightwave circuit Mach-Zehnder interferometers (MZIs) with ultra stable operation. These characteristics enabled us to perform an entanglement-based QKD experiment over a 100-km optical fiber. In the experiment, which lasted approximately 8 hours, we successfully generated a 16 kbit sifted key with a quantum bit error rate of 6.9 % at a rate of 0.59 bits per second, from which we were able to distill a 3.9 kbit secure key
Asymptotic function for multi-growth surfaces using power-law noise
Numerical simulations are used to investigate the multiaffine exponent
and multi-growth exponent of ballistic deposition growth
for noise obeying a power-law distribution. The simulated values of
are compared with the asymptotic function that is
approximated from the power-law behavior of the distribution of height
differences over time. They are in good agreement for large . The simulated
is found in the range . This implies that large rare events tend to break the KPZ
universality scaling-law at higher order .Comment: 5 pages, 4 figures, to be published in Phys. Rev.
Crossover of the weighted mean fragment mass scaling in 2D brittle fragmentation
We performed vertical and horizontal sandwich 2D brittle fragmentation
experiments. The weighted mean fragment mass was scaled using the multiplicity
. The scaling exponent crossed over at . In the
small regime, the binomial multiplicative (BM) model was
suitable and the fragment mass distribution obeyed log-normal form. However, in
the large regime, in which a clear power-law cumulative
fragment mass distribution was observed, it was impossible to describe the
scaling exponent using the BM model. We also found that the scaling exponent of
the cumulative fragment mass distribution depended on the manner of impact
(loading conditions): it was 0.5 in the vertical sandwich experiment, and
approximately 1.0 in the horizontal sandwich experiment.Comment: 5 pages, 3 figure
Megabits secure key rate quantum key distribution
Quantum cryptography (QC) can provide unconditional secure communication
between two authorized parties based on the basic principles of quantum
mechanics. However, imperfect practical conditions limit its transmission
distance and communication speed. Here we implemented the differential phase
shift (DPS) quantum key distribution (QKD) with up-conversion assisted hybrid
photon detector (HPD) and achieved 1.3 M bits per second secure key rate over a
10-km fiber, which is tolerant against the photon number splitting (PNS)
attack, general collective attacks on individual photons, and any other known
sequential unambiguous state discrimination (USD) attacks.Comment: 14 pages, 4 figure
High-pressure study of X-ray diffuse scattering in ferroelectric perovskites
We present a high-pressure x-ray diffuse scattering study of the ABO
ferroelectric perovskites BaTiO_3 and KNbO_3. The well-known diffuse lines are
observed in all the phases studied. In KNbO_3, we show that the lines are
present up to 21.8 GPa, with constant width and a slightly decreasing
intensity. At variance, the intensity of the diffuse lines observed in the
cubic phase of BaTiO_3 linearly decreases to zero at GPa. These
results are discussed with respect to x-ray absorption measurements, which
leads to the conclusion that the diffuse lines are only observed when the B
atom is off the center of the oxygen tetrahedron. The role of such disorder on
the ferroelectric instability of perovskites is discussed.Comment: 4 pages, Accepted in PR
- …