113 research outputs found

    Antioxidant Responses of Ragweed Leaf Beetle Ophraella communa (Coleoptera: Chrysomelidae) Exposed to Thermal Stress

    Get PDF
    Ophraellacommuna LeSage is an effective biological control agent of common ragweed, Ambrosia artemisiifolia L., which competes with crops and causes allergic rhinitis and asthma. However, thermal stress negatively affects the developmental fitness and body size of this beetle. High temperatures cause a variety of physiological stress responses in insects, which can cause oxidative damage. We investigated the total protein content and activity of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and peroxidases (PODs) in O. communa adults when its different developmental stages were exposed to high temperatures (40, 42, and 44°C) for 3 h each day for 3, 5, 5, and 5 days, respectively (by stage), and a whole generation to high temperatures (40, 42, and 44°C) for 3 h each day. A control group was reared at 28 ± 2°C. Under short-term daily phasic high-temperature stress, total protein contents were close to the control as a whole; overall, SOD activities increased significantly, CAT activities were closer to or even higher than the control, POD activities increased at 40°C, decreased at 42 or 44°C; stage-specific response was also observed. Under long-term daily phasic high-temperature stress, total protein content increased significantly at 44°C, SOD activities increased at higher temperatures, decreased at 44°C; CAT activities of females increased at ≤42°C, and decreased at 44°C, CAT activities of males decreased significantly; POD activities of females increased at 40°C, decreased at ≥42°C, POD activities of males decreased at 44°C; and antioxidant enzymes activities in females were significantly higher than those in males. Antioxidative enzymes protect O. communa from oxidative damage caused by thermal stress

    Comparison of Rooting Strategies to Explore Rock Fractures for Shallow Soil-Adapted Tree Species with Contrasting Aboveground Growth Rates: A Greenhouse Microcosm Experiment

    Get PDF
    For tree species adapted to shallow soil environments, rooting strategies that efficiently explore rock fractures are important because soil water depletion occurs frequently. However, two questions: (a) to what extent shallow soil-adapted species rely on exploring rock fractures and (b) what outcomes result from drought stress, have rarely been tested. Therefore, based on the expectation that early development of roots into deep soil layers is at the cost of aboveground growth, seedlings of three tree species (Cyclobalanopsis glauca, Delavaya toxocarpa, and Acer cinnamomifolium) with distinct aboveground growth rates were selected from a typical shallow soil region. In a greenhouse experiment that mimics the basic features of shallow soil environments, 1-year-old seedlings were transplanted into simulated microcosms of shallow soil overlaying fractured bedrock. Root biomass allocation and leaf physiological activities, as well as leaf δ13C values were investigated and compared for two treatments: regular irrigation and repeated cycles of drought stress. Our results show that the three species differed in their rooting strategies in the context of encountering rock fractures, however, these strategies were not closely related to the aboveground growth rate. For the slowest-growing seedling, C. glauca, percentages of root mass in the fractures, as well as in the soil layer between soil and bedrock increased significantly under both treatments, indicating a specialized rooting strategy that facilitated the exploration of rock fractures. Early investment in deep root growth was likely critical to the establishment of this drought-vulnerable species. For the intermediate-growing, A. cinnamomifolium, percentages of root mass in the bedrock and interface soil layers were relatively low and exhibited no obvious change under either treatment. This limited need to explore rock fractures was compensated by a conservative water use strategy. For the fast-growing, D. toxocarpa, percentages of root mass in the bedrock and interface layers increased simultaneously under drought conditions, but not under irrigated conditions. This drought-induced rooting plasticity was associated with drought avoidance by this species. Although, root development might have been affected by the simulated microcosm, contrasting results among the three species indicated that efficient use of rock fractures is not a necessary or specialized strategy of shallow-soil adapted species. The establishment and persistence of these species relied on the mutual complementation between their species-specific rooting strategies and drought adaptations

    Lattice-based weak curve fault attack on ECDSA

    Get PDF
    ECDSA algorithm is usually used in ICT system to achieve communication authenticity. But weakness in various implementations of the algorithm may make its security deviate from theoretical guarantee. This paper proposes a new lattice-based weak curve fault attack on ECDSA. An elliptic curve is weak if the problem of ECDLP in a \emph{subgroup} of the point group G\langle G \rangle is computationally solvable in practice, where GG is the specified basis point of ECDSA algorithm. Since ECDLP is not required to be computationally practical in the whole group of G\langle G \rangle, our approach extends the known existing attacks along this line. In detail, the proposed attack assumes a fault injection process can perturb a segment of consecutive bits of the curve parameter aa in the Weierstrass equation of ECDSA. An analysis on the density of smooth numbers indicates the faulty value a2˘7a\u27 parameterized elliptic curve is weak in high probability. Then we show the faulty value a2˘7a\u27 can be recovered by a dedicated quadratic residue distinguisher, which makes it possible to collect enough side channel information about the nonce used in the ECDSA signature generation process. With the help of these information, we can construct a lattice to recover the private key with lattice basis reduction techniques. Further, we show the same strategy can defeat the nonce masking countermeasure if the random mask is not too long, and makes the commonly employed countermeasures ineffective. To our knowledge, the problem remains untractable to the existing weak curve fault attacks. Thus the proposed approach can find more applications than the existing ones. This is demonstrated by the experimental analysis

    Effect of host shift on the gut microbes of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae)

    Get PDF
    BackgroundGut microbes play an important role in the adaptation of insects. Polyphagous insects usually undergo changes in gut microbiota after host shift. The Bactrocera cucurbitae have a wide range of hosts, but the dynamic of gut microorganisms during host shift have not been thoroughly investigated. To understand the role of gut microbes in insect adaptation, it is necessary to study the dynamics of insect gut microorganisms during host transfer.MethodsUsing Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) and its four hosts as study subjects, we investigated the dynamics of gut microbes during host transfer and the effects of different hosts on the gut microbial composition of B. cucurbitae.ResultsThe results showed that the Chao1 index of B. cucurbitae decreased significantly during host transfer, and the intestinal microorganisms were significantly affected by the original host, host, and generations. Furthermore, predicated changes in the abundance of secondary metabolite pathways after host transfer suggested that microorganisms may play an important role in the degradation of secondary metabolites, among which Providencia and Morganella have important functions in the gut of B. cucurbitae.ConclusionThis implied that microorganisms play a function in the host transfer process of B. cucurbitae and may be an important cofactor in the adaptation of B. cucurbitae to different hosts and environments, providing new research ideas for the future control of B. cucurbitae

    Efficient Token-Guided Image-Text Retrieval with Consistent Multimodal Contrastive Training

    Full text link
    Image-text retrieval is a central problem for understanding the semantic relationship between vision and language, and serves as the basis for various visual and language tasks. Most previous works either simply learn coarse-grained representations of the overall image and text, or elaborately establish the correspondence between image regions or pixels and text words. However, the close relations between coarse- and fine-grained representations for each modality are important for image-text retrieval but almost neglected. As a result, such previous works inevitably suffer from low retrieval accuracy or heavy computational cost. In this work, we address image-text retrieval from a novel perspective by combining coarse- and fine-grained representation learning into a unified framework. This framework is consistent with human cognition, as humans simultaneously pay attention to the entire sample and regional elements to understand the semantic content. To this end, a Token-Guided Dual Transformer (TGDT) architecture which consists of two homogeneous branches for image and text modalities, respectively, is proposed for image-text retrieval. The TGDT incorporates both coarse- and fine-grained retrievals into a unified framework and beneficially leverages the advantages of both retrieval approaches. A novel training objective called Consistent Multimodal Contrastive (CMC) loss is proposed accordingly to ensure the intra- and inter-modal semantic consistencies between images and texts in the common embedding space. Equipped with a two-stage inference method based on the mixed global and local cross-modal similarity, the proposed method achieves state-of-the-art retrieval performances with extremely low inference time when compared with representative recent approaches.Comment: Code is publicly available: https://github.com/LCFractal/TGD

    Lattice-based Fault Attacks on Deterministic Signature Schemes of ECDSA and EdDSA

    Get PDF
    The deterministic ECDSA and EdDSA signature schemes have found plenty of applications since their publication and standardization. Their theoretical security can be guaranteed under certain well-designed models, while their practical risks from the flaw of random number generators can be mitigated since no randomness is required by the algorithms anymore. But the situation is not completely optimistic, since it has been gradually found that delicately designed fault attacks can threaten the practical security of the schemes. We present a lattice-based fault analysis method to the deterministic ECDSA and EdDSA algorithms. The underlying fault injection model is a special case of the random fault model in~\cite{MMF2019}. By noticing the algebraic structures of the deterministic algorithms, we show that, when providing with some valid faulty signatures and an associated correct signature of the same input message, some instances of lattice problems can be constructed to recover the signing key. This makes the allowed faulty bits close to the size of the signing key, and obviously bigger than that of the existing differential fault attacks. Moreover, the lattice-based approach supports much more alternative targets of fault injection when comparing with the existing approaches, which further improves its applicability. Experiments are performed to validate the effectiveness of the key recovery method. It is demonstrated that, for 256-bit deterministic ECDSA/EdDSA, the signing key can be recovered efficiently with significant probability even if the targets are affected by 250 (or 247) faulty bits. This is, however, impractical for the existing faulty pattern enumerating approaches

    East Meets West: An International Dialogue on Mediation and Med-Arb in the United States and China

    Get PDF
    This Second Beijing Arbitration Commission (BAC)/Straus Institute for Dispute Resolution International Videoconference, following up on last year\u27s successful inaugural program, will provide different perspectives on the current BAC initiative and evolving attitudes toward mediation and med-arb. Topics include: (1) the development and current state of business mediation in the U.S.; (2) the challenges and opportunities confronting China in developing stand-alone business mediation; (3) reflections on the skills necessary for mediators; (4) common pitfalls in mediation; (5) perspectives on med-arb (as opposed to stand-alone mediation); and (6) how to most effectively use mediation in conjunction with arbitration procedures

    Using Network Processor to Establish Security Agent for AODV Routing Protocol

    Get PDF
    Network Processor (NP) is optimized to perform special network functionalities. It has highly parallel processing architecture to achieve high performance. Ad hoc network is an exciting research aspect due to the characters of self-organization、 dynamically changing topology and temporary network life. However, all the characters make the security problem more serious. Denial-of-Service (DoS) attack is the main puzzle in the security of Ad hoc network. A novel NP-based security scheme is proposed to combat the attack in AODV routing protocol. Security agent is established by a hardware thread in NP. Agent can update itself at some interval by the trustworthiness of the neighbor nodes. Agent can trace the RREQ and RREP messages stream to aggregate the key information to link list and analyze them by intrusion detection algorithm. NS2 simulator is expanded to validate the security scheme. Simulation results show that NP-based security scheme is highly effective to detect and block DoS attack

    Feeding on rapid cold hardening Ambrosia artemisiifolia enhances cold tolerance of Ophraella communa

    Get PDF
    Low temperatures greatly influence newly introduced species, and increased cold tolerance can facilitate their establishment in new environments. The invasive alien species Ambrosia artemisiifolia is distributed at high latitudes and altitudes, where it suffers more from cold stress than it would at low latitudes or altitudes. Whether cold stress influences the accumulation of cryoprotectants and cold tolerance in A. artemisiifolia, and further influences the cold tolerance of its biological control agent, Ophraella communa, through feeding remain unknown. We investigated the levels of cryoprotectants and metabolic changes in A. artemisiifolia. We found that the level of total sugar, trehalose, proline, and other cold responsible metabolites increased in A. artemisiifolia after rapid cold-hardening (RCH) treatment, when compared to normal plants. These indicated that RCH treatment could improve the cold-hardiness of A. artemisiifolia. We then investigated the levels of cryoprotectants and metabolic changes in O. communa. We found that O. communa fed on RCH-treated A. artemisiifolia had higher levels of total sugar, trehalose, proline, glycerol, lipid, lower water content, lower super-cooling point, and increased cold tolerance compared to O. communa fed on normal A. artemisiifolia. This suggested that O. communa fed on cold-hardened A. artemisiifolia could increase its cold tolerance. Results showed a trophic transmission in insect cold tolerance. Our study enriches the theoretical basis for the co-evolution of cold tolerance in invasive and herbivorous insects

    Antiferromagnetic magnonic charge current generation via ultrafast optical excitation

    Full text link
    N\'eel spin-orbit torque allows a charge current pulse to efficiently manipulate the N\'eel vector in antiferromagnets, which offers a unique opportunity for ultrahigh density information storage with high speed. However, the reciprocal process of N\'eel spin-orbit torque, the generation of ultrafast charge current in antiferromagnets has not been demonstrated. Here, we report the experimental observation of charge current generation in antiferromagnetic metallic Mn2Au thin films using ultrafast optical excitation. The ultrafast laser pulse excites antiferromagnetic magnons, resulting in instantaneous non-equilibrium spin polarization at the antiferromagnetic spin sublattices with broken spatial symmetry. Then the charge current is generated directly via spin-orbit fields at the two sublattices, which is termed as the reciprocal phenomenon of N\'eel spin-orbit torque, and the associated THz emission can be detected at room temperature. Besides the fundamental significance on the Onsager reciprocity, the observed magnonic charge current generation in antiferromagnet would advance the development of antiferromagnetic THz emitter.Comment: 15 pages, 4 figures, this work was submitted to Nature Communications on Jan. 4th, 2023, now is under the 3rd review proces
    corecore