28 research outputs found

    SiCP: Simultaneous Individual and Cooperative Perception for 3D Object Detection in Connected and Automated Vehicles

    Full text link
    Cooperative perception for connected and automated vehicles is traditionally achieved through the fusion of feature maps from two or more vehicles. However, the absence of feature maps shared from other vehicles can lead to a significant decline in object detection performance for cooperative perception models compared to standalone 3D detection models. This drawback impedes the adoption of cooperative perception as vehicle resources are often insufficient to concurrently employ two perception models. To tackle this issue, we present Simultaneous Individual and Cooperative Perception (SiCP), a generic framework that supports a wide range of the state-of-the-art standalone perception backbones and enhances them with a novel Dual-Perception Network (DP-Net) designed to facilitate both individual and cooperative perception. In addition to its lightweight nature with only 0.13M parameters, DP-Net is robust and retains crucial gradient information during feature map fusion. As demonstrated in a comprehensive evaluation on the OPV2V dataset, thanks to DP-Net, SiCP surpasses state-of-the-art cooperative perception solutions while preserving the performance of standalone perception solutions

    3D-printed custom implant for the management of “locked” posterior dislocation of the shoulder joint with reverse Hill-Sachs lesion: a case report

    Get PDF
    Introduction: Irregular bone defects of the humerus are common in clinical practice, but there are fewer reported cases of irregular humeral defects accompanied by shoulder joint “locking” dislocation and reverse Hill-Sachs injury caused by an electric shock. The choice of treatment for such cases is closely related to the extent of shoulder joint function recovery. This is a case report of a 60-year-old male patient who suffered from a shoulder joint “locking” dislocation with accompanying reverse Hill-Sachs injury due to muscle contraction after being electrically shocked at work. The patient was treated with a 3D-printed custom humeral head prosthesis for the treatment of the shoulder joint “locking” dislocation and reverse Hill-Sachs injury.Case presentation: A 60-year-old male patient, working as a construction worker, presented to our emergency department with right shoulder pain and restricted movement for more than 30 min after an electric shock. Right humeral CT revealed a comminuted fracture of the right humeral head. D-dimer levels were significantly elevated at 3239.00 ng/mL, and oxygen partial pressure was slightly decreased at 68 mmHg. Treatment included emergency wound debridement and dressing for the electrical injury, cardioprotective measures, anticoagulation, and symptomatic management. After stabilizing the patient’s condition, the patient underwent 3D-printed custom prosthesis-assisted partial replacement of the right humeral head and rotator cuff repair in the orthopedic department. Postoperatively, the patient’s right shoulder joint wound healed well, and mobility was restored.Conclusion: This case report demonstrates that the use of a 3D-printed custom prosthesis for the treatment of irregular humeral bone defects caused by specific injury mechanisms, especially cases involving shoulder joint “locking” dislocation and reverse Hill-Sachs injury, can achieve precise bone defect repair, minimize surgical trauma, and provide superior outcomes in terms of postoperative functional rehabilitation

    Antitumor Effects of Berberine on Gliomas via Inactivation of Caspase-1-Mediated IL-1β and IL-18 Release

    Get PDF
    Gliomas arise in the glial cells of the brain or spine and are the most prevalent and devastating type of brain tumors. Studies of tumor immunology have established the importance of the tumor micro-environment as a driver of oncogenesis. Inflammatory mediators such as IL-1β and IL-18 released by monocytes regulate transcriptional networks that are required for malignant cell growth. Berberine is a natural botanical alkaloid that is widely found in the Berberis species. Although it has been widely used as an anti-diarrheal treatment in North America for several decades, our study is the first to investigate berberine as an anti-tumor agent in glioma cells. In this study, we demonstrate that berberine significantly inhibits inflammatory cytokine Caspase-1 activation via ERK1/2 signaling and subsequent production of IL-1β and IL-18 by glioma cells. Moreover, we found that berberine treatment led to decreased motility and subsequently cell death in U251 and U87 cells. In addition, our study is the first to indicate that berberine can reverse the process of epithelial-mesenchymal transition, a marker of tumor invasion. Taken together, our work supports berberine as a putative anti-tumor agent targeting glioma cells

    The Effect of Raw Soybean on Oxidative Status of Digestive Organs in Mice

    Get PDF
    The present study was undertaken to specify the effect of raw soybean on oxidative status of digestive organs in mice. For this purpose, thirty male (C57BL/6J) mice were randomly divided into three groups and fed on different diets as follows: Group 1 was fed on control diet, Group 2 was fed on raw soybean diet and Group 3 was fed on raw soybean diet supplemented with 30 mg/kg cysteamine. After two weeks of feeding, duodenum, liver and pancreas samples were collected to measure oxidative and antioxidative parameters. The results show that ingestion of raw soybean markedly increased contents of superoxide anion and malondialdehyde (MDA) and activity of inducible nitric oxide synthase (iNOS), decreased activity of superoxide dismutase (SOD), T-AOC and content of reduced glutathione (GSH) in digestive organs of mice (P < 0.05). In the group fed with raw soybean diet supplemented with cysteamine, oxidative stress was mitigated. However, oxidative parameter levels were still higher than those of control diet-fed group. The present study indicates that ingestion of raw soybean could result in an imbalance between oxidant and antioxidant, and thus induce oxidative stress in digestive organs of mice

    Regulatory mechanism and therapeutic potentials of naringin against inflammatory disorders

    No full text
    Naringin is a natural flavonoid with therapeutic properties found in citrus fruits and an active natural product from herbal plants. Naringin has become a focus of attention in recent years because of its ability to actively participate in the body's immune response and maintain the integrity of the immune barrier. This review aims to elucidate the mechanism of action and therapeutic efficacy of naringin in various inflammatory diseases and to provide a valuable reference for further research in this field. The review provided the chemical structure, bioavailability, pharmacological properties, and pharmacokinetics of naringin and found that naringin has good therapeutic potential for inflammatory diseases, exerting anti-inflammatory, anti-apoptotic, anti-oxidative stress, anti-ulcerative and detoxifying effects in the disease. Moreover, we found that the great advantage of naringin treatment is that it is safe and can even alleviate the toxic side effects associated with some of the other drugs, which may become a highlight of naringin research. Naringin, an active natural product, plays a significant role in systemic diseases' anti-inflammatory and antioxidant regulation through various signaling pathways and molecular mechanisms

    Evodiamine attenuates cadmium-induced nephrotoxicity through activation of Nrf2/HO-1 pathway

    Get PDF
    Purpose: To investigate the protective role of evodiamine, a naturally occurring anti-inflammatory, antioxidant, and anti-apoptotic compound, against cadmium-induced cytotoxicity in proximal tubular cells (human kidney 2; HK-2). Methods: HK-2 cells were treated with different concentrations of evodiamine (5, 20, 50 μM) for 2 h and then incubated with 40 μM cadmium chloride for another 24 h. Cell viability and apoptosis were evaluated using thiazolyl blue tetrazolium bromide (MTT) and flow cytometry, respectively. Oxidative stress was assayed by measuring the levels of malonaldehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) and glutathione peroxidase (GSH-PX). Results: Cadmium chloride treatment in HK-2 cells significantly reduced cell viability (p &lt; 0.01) and increased apoptosis compared to the control. Evodiamine pretreatment attenuated the cadmium chloride-provoked decrease in cell viability and increase in apoptosis. Evodiamine also decreased expression of cleaved caspase-3 and cleaved caspase-9 in HK-2 cells. Cadmium chloride exposure provoked kidney injury, as evidenced by increased MDA levels and decreased SOD, GSH, and GSH-PX levels. Pretreatment with evodiamine ameliorated kidney injury, as shown by decreased MDA expression and increased SOD, GSH, and GSH-PX expression. Evodiamine exposure significantly enhanced protein expression of nuclear factor erythropoietin-2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1). Conclusion: Evodiamine exerts an anti-apoptotic and anti-oxidative effect against cadmium chloride-induced nephrotoxicity via Nrf2/HO-1 pathway activation. These findings represent a potential therapeutic strategy for cadmium-provoked nephrotoxicity

    Regulatory Mechanism of M1/M2 Macrophage Polarization in the Development of Autoimmune Diseases

    No full text
    Macrophages are innate immune cells in the organism and can be found in almost tissues and organs. They are highly plastic and heterogeneous cells and can participate in the immune response, thereby playing a crucial role in maintaining the immune homeostasis of the body. It is well known that undifferentiated macrophages can polarize into classically activated macrophages (M1 macrophages) and alternatively activated macrophages (M2 macrophages) under different microenvironmental conditions. The directions of macrophage polarization can be regulated by a series of factors, including interferon, lipopolysaccharide, interleukin, and noncoding RNAs. To elucidate the role of macrophages in various autoimmune diseases, we searched the literature on macrophages with the PubMed database. Search terms are as follows: macrophages, polarization, signaling pathways, noncoding RNA, inflammation, autoimmune diseases, systemic lupus erythematosus, rheumatoid arthritis, lupus nephritis, Sjogren’s syndrome, Guillain-Barré syndrome, and multiple sclerosis. In the present study, we summarize the role of macrophage polarization in common autoimmune diseases. In addition, we also summarize the features and recent advances with a particular focus on the immunotherapeutic potential of macrophage polarization in autoimmune diseases and the potentially effective therapeutic targets

    On-demand Doppler-offset beamforming with intelligent spatiotemporal metasurfaces

    No full text
    Recently, significant efforts have been devoted to guaranteeing high-quality communication services in fast-moving scenes, such as high-speed trains. The challenges lie in the Doppler effect that shifts the frequency of the transmitted signal. To this end, the recent emergence of spatiotemporal metasurfaces offers a promising solution, which can manipulate electromagnetic waves in time and space domain while being lightweight and cost-effective. Here we introduce deep learning-assisted spatiotemporal metasurfaces to automatically and adaptively neutralize Doppler effect in fast-moving situations. A tandem neural network is used to establish a rapid connection between on-site targets and time-varying series of spatiotemporal metasurfaces, endowing the capability of on-demand beamforming with Doppler effects offset. Moreover, oblique incidence problems are also studied in practice, which can be used for relieving multipath effect. In the microwave experiment, we fabricate the intelligent spatiotemporal metasurfaces and demonstrate the potential to fulfill Doppler-offset beamforming under oblique incidence

    High dimethylsulfoniopropionate concentrations in the surface seawater over the marginal seas of China and the Northwest Pacific Ocean during May-July of 2021 following La Nina

    No full text
    The total dimethylsulfoniopropionate (DMSPt) concentrations over the surface seawater of China's marginal seas and the northwest Pacific Ocean (NWPO) in May-July 2021 (during the recessional period of La Nin & SIM;a) were analysed. The results showed that the DMSPt concentrations in the marginal seas of China varied from 4.73 to 775.96 nmol L-1, with an average value of 111.42 & PLUSMN; 129.30 nmol L-1 (average & PLUSMN; standard deviation). It was 2-12 times higher than those previously measured in the same seas and in the NWPO in this study. Significant positive correlations between DMSPt, chlorophyll -a and surface seawater temperature (SST) were observed in the SYS, the ECS and the NWPO. Moreover, their abnormally high SST was related to La Nin & SIM;a. These results sug-gested that high phytoplankton abundance was caused by abnormally high SST following La Nin & SIM;a, which further promoted DMSPt concentration increases. However, the increase of DMSPt was also related to other factors such as nutrients

    Mining multi-center heterogeneous medical data with distributed synthetic learning

    No full text
    Abstract Overcoming barriers on the use of multi-center data for medical analytics is challenging due to privacy protection and data heterogeneity in the healthcare system. In this study, we propose the Distributed Synthetic Learning (DSL) architecture to learn across multiple medical centers and ensure the protection of sensitive personal information. DSL enables the building of a homogeneous dataset with entirely synthetic medical images via a form of GAN-based synthetic learning. The proposed DSL architecture has the following key functionalities: multi-modality learning, missing modality completion learning, and continual learning. We systematically evaluate the performance of DSL on different medical applications using cardiac computed tomography angiography (CTA), brain tumor MRI, and histopathology nuclei datasets. Extensive experiments demonstrate the superior performance of DSL as a high-quality synthetic medical image provider by the use of an ideal synthetic quality metric called Dist-FID. We show that DSL can be adapted to heterogeneous data and remarkably outperforms the real misaligned modalities segmentation model by 55% and the temporal datasets segmentation model by 8%
    corecore