291 research outputs found

    Broadband negative refraction in stacked fishnet metamaterial

    Full text link
    We demonstrate a scheme to utilize the stacked fishnet metamaterial for all-angle negative refraction and subwavelength imaging within a wide frequency range starting from zero frequency. The theoretical predictions are verified by the finite-difference-in-time-domain (FDTD) numerical simulations. The phenomena come from the negative evanescent coupling between the adjacent slab waveguides through the breathing air holes perforated on metal layers.Comment: 8 pages, 4 figure

    The Photonic Band theory and the negative refraction experiment of metallic helix metamaterials

    Full text link
    We develop a theory to compute and interpret the photonic band structure of a periodic array of metallic helices for the first time. Interesting features of band structure include the ingenuous longitudinal and circularly polarized eigenmodes, the wide polarization gap [Science 325, 1513 (2009)], and the helical symmetry guarantees the existence of negative group velocity bands at both sides of the polarization gap and band crossings pinned at the zone boundary with fixed frequencies. A direct proof of negative refraction via a chiral route [Science 306, 1353 (2004)] is achieved for the first time by measuring Gooshanchen shift through a slab of three dimensional bona fide helix metamaterial

    Anti-jamming of Inverse Synthetic Aperture Radar based on Slope-varying Linear Frequency Modulation Signal

    Get PDF
    Deceptive jamming technology against inverse synthetic aperture radar is matured now, which is meaningful in military application. But the research on anti-jamming technology for inverse synthetic aperture radar (ISAR) is still not a mature technology. Through the analysis on the theory of deceptive jamming technology against ISAR, a new method for anti-jamming against ISAR based on linear frequency modulation signals frequency slope-varying is presented. The false target echo energy is suppressed due to frequency modulation slope mis-matching. Doppler domain averaging is adopted for improving the quality of the ISAR image, which helps automatic target recognition. Simulation result based on simulating data shows the validity of the new algorithm.Defence Science Journal, 2009, 59(5), pp.537-544, DOI:http://dx.doi.org/10.14429/dsj.59.155

    Relationship between Thermal Conductivity and Compressive Strength of Insulation Concrete: A Review

    Get PDF
    Developing insulation concrete with high strength is essential for the construction of energy saving buildings. This is important to achieve carbon neutrality in the modern building industry. This paper reviews the existing studies in the literature on insulation concrete. This paper aims to reveal the correlation between the thermal conductivity and strength of concrete and identify the most effective method to make insulation concrete with lower thermal conductivity but higher strength. The review is carried out from two perspectives, including the effects of different foaming methods and various lightweight aggregates. As for the foaming methods, the chemical and mechanical foaming methods are discussed. As for the lightweight aggregates, cenospheres, porous aggregates, aerogels, and phase change materials are assessed. It is clearly observed that the thermal conductivity and compressive strength of concrete can be fitted by a linear function. As for the foaming methods, chemical foaming using hydrogen peroxide is the most effective to produce concrete with relatively lower thermal conductivity and higher compressive strength. For concrete with lightweight aggregates, cenospheres are the best option. Finally, recommendations are made to develop concrete with lower thermal conductivity and higher strength

    Road Surface State Recognition Based on SVM Optimization and Image Segmentation Processing

    Get PDF
    Adverse road condition is the main cause of traffic accidents. Road surface condition recognition based on video image has become a central issue. However, hybrid road surface and road surface under different lighting environments are two crucial problems. In this paper, the road surface states are categorized into 5 types including dry, wet, snow, ice, and water. Then, according to the original image size, images are segmented; 9-dimensional color eigenvectors and 4 texture eigenvectors are extracted to construct road surface state characteristics database. Next, a recognition method of road surface state based on SVM (Support Vector Machine) is proposed. In order to improve the recognition accuracy and the universality, a grid searching algorithm and PSO (Particle Swarm Optimization) algorithm are used to optimize the kernel function factor and penalty factor of SVM. Finally, a large number of actual road surface images in different environments are tested. The results show that the method based on SVM and image segmentation is feasible. The accuracy of PSO algorithm is more than 90%, which effectively solves the problem of road surface state recognition under the condition of hybrid or different video scenes

    Population Redistribution among Multiple Electronic States of Molecular Nitrogen Ions in Strong Laser Fields

    Full text link
    We carry out a combined theoretical and experimental investigation on the population distributions in the ground and excited states of tunnel ionized N2 molecules at various driver wavelengths in the near- and mid-infrared range. Our results reveal that efficient couplings (i.e., population exchanges) between the ground state and the excited states occur in strong laser fields. The couplings result in the population inversion between the ground and the excited states at the wavelengths near 800 nm, which is verified by our experiment by observing the amplification of a seed at ~391 nm. The result provides insight into the mechanism of free-space nitrogen ion lasers generated in remote air with strong femtosecond laser pulses.Comment: 18 pages, 4 figure
    • …
    corecore