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Abstract: Developing insulation concrete with high strength is essential for the construction of energy saving buildings. 
This is important to achieve carbon neutrality in the modern building industry. This paper reviews the existing studies in 
the literature on insulation concrete. This paper aims to reveal the correlation between the thermal conductivity and 
strength of concrete and identify the most effective method to make insulation concrete with lower thermal conductivity 
but higher strength. The review is carried out from two perspectives, including the effects of different foaming methods 
and various lightweight aggregates. As for the foaming methods, the chemical and mechanical foaming methods are 
discussed. As for the lightweight aggregates, cenospheres, porous aggregates, aerogels, and phase change materials 
are assessed. It is clearly observed that the thermal conductivity and compressive strength of concrete can be fitted by a 
linear function. As for the foaming methods, chemical foaming using hydrogen peroxide is the most effective to produce 
concrete with relatively lower thermal conductivity and higher compressive strength. For concrete with lightweight 
aggregates, cenospheres are the best option. Finally, recommendations are made to develop concrete with lower 
thermal conductivity and higher strength. 

Keywords: Foaming, lightweight aggregates, thermal conductivity, compressive strength, concrete. 

1. INTRODUCTION  

Global energy consumption is increasing, and 
buildings consume a large proportion of global energy 
[1, 2]. Thus, the energy-saving of buildings through 
thermal insulation has attracted much attention. There 
are two ways of achieving building insulation. One is to 
use non-structural materials with low thermal 
conductivity attaching to the inside or outside of the 
building, and the other is to use structural materials 
with low thermal conductivity so that they can carry the 
loading and save energy at the same time. 

As for non-structural insulation materials, organic 
foaming materials and inorganic foaming materials are 
normally used to reduce thermal conductivity. Organic 
foaming materials have the advantages of higher 
strength and lower density than inorganic foaming  
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materials when the thermal conductivity is the same, 
but their disadvantages include low fire resistance, 
spalling, and UV aging, which limit their applications in 
building insulations. In comparison, inorganic foaming 
materials have attracted more attention for their 
excellent fire resistance and durability. Inorganic 
foaming materials are mostly cementitious materials 
that are made by adding foaming agents such as 
hydrogen peroxide [3-8] or aluminum powder [9-11] or 
directly adding foam which is made through mechanical 
processing [12-15] into the mixture. Compared with 
organic counterparts, inorganic foaming materials have 
higher porosity and lower thermal conductivity [2]. 

As for structural insulation materials for building 
applications, low thermal conductivity is achieved by 
adding lightweight aggregates of low thermal 
conductivity in the mixture, such as microspheres [16-
19] and perlite [20]. Lightweight aggregate concrete 
can be used as a structural material for building 
constructions (e.g., walls) to achieve thermal insulation 
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and load carrying function at the same time. Compared 
with non-structural insulation materials, structural 
insulation materials have higher thermal conductivity 
and higher strength. In other words, lightweight 
aggregates are not as effective as foam for thermal 
insulation but are desirable for strength improvement. 

Therefore, materials made by foaming have good 
insulation but are weak in strength, whereas materials 
made by adding lightweight aggregates may have 
better strength but at the cost of low insulation 
performance. How to obtain a balance between the 
insulation performance and strength becomes the key 
research question [2]. It is desirable to develop a 
material with low thermal conductivity and high strength 
so that it can be used as a structural material to 
achieve thermal insulation and load carrying at the 
same time. This is crucial for the cost and energy 
saving of buildings. 

This paper presents a review of the relationship 
between the thermal conductivity and strength of 
concrete to identify the key influencing factors. This will 
guide the development and design of new generation 
insulation concrete for cost and energy saving 
purposes. This review focuses on two methods for 
achieving insulation, i.e., adding foaming and 
lightweight aggregates in the mixture, because they are 
the most adopted methods in making insulation 
concrete. This review is divided into two parts, with the 
first and second parts discuss the effects of foaming 
and lightweight aggregates, respectively. 

2. EFFECTS OF FOAMING METHODS 

Foaming is an effective method to reduce the 
thermal conductivity of concrete. This is because the 
air bubbles in the foam have lower thermal conductivity 
than the surrounding matrix [21]. However, the foaming 
in concrete will inevitably reduce the concrete strength 
due to the porous microstructure. The pore volume, 
size, and shape mainly affect thermal conductivity and 
strength [22-25]. Foaming can be created using either 
chemical agents or mechanical processing. 

2.1. Chemical Foaming 

2.1.1. Aluminum Powder 

Aluminum power as a foaming agent has been 
widely used in making insulation concrete [9-11]. 
Aluminum powers could react with alkali in the 
cementitious materials and release hydrogen gas, 
following the reaction as: 

Al(s)+ 3H 2O(l)+OH
! (aq.)" Al(OH )4

! (aq.)+ 3
2
H 2 (g)   (1) 

Generally, more aluminum powder and a higher 
water/binder ratio will create more pores in concrete 
[26, 27]. It can be seen from Eq. 1 that aluminum 
powders react with alkali, which produces hydrogen 
gas and aluminum ions. The aluminum ions will 
participate in the cement hydration and provide 
strength to the pore walls. This may affect its 
mechanical properties and insulation performance. The 
thermal conductivity and 28-day compressive strength 
changed with the addition of aluminum powder, so 
these reported data are presented in Figure 1, and 
these studies are summarized in Table 1. Figure 1 
shows a linear relationship between thermal 
conductivity and strength. This explains why it is 
difficult to achieve high strength and low conductivity of 
the concrete simultaneously. The following function can 
represent this linear relationship: 

 
Figure 1: The relationship between thermal conductivity and 
28-day compressive strength of concrete with aluminum 
powder as a foaming agent. 

y = 0.049x + 0.001 (R2 = 0.932)          (2) 

The 28-day compressive strength of the specimen 
decreases with the increase addition of aluminum 
powder, and so does its thermal conductivity. In Table 
1, the best performance of paste foaming by aluminum 
powders is achieved by Novais et al. [28] because it 
has the lowest gradient. This low boundary means the 
same 28-day compressive strength with the lowest 
thermal conductivity. This result shows that the fly ash 
and metakaolin-based geopolymer paste is the best 
paste to match the aluminum powder in Table 1. Table 
1 also shows that the gradient is from 0.021 to 0.054. 
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2.1.2. Hydrogen Peroxide 

Hydrogen peroxide (H2O2) is a foaming agent which 
produces oxygen gas through decomposition, as 
shown in Eq. 3. H2O2 can decompose and create uni-
form oxygen bubbles when the temperature increases. 

2H 2O2 (l)! 2H 2O(l)+O2 (g)          (3) 

It was reported that the 28-day compressive 
strength and thermal conductivity of concrete 
decreased with the addition of H2O2 [3-8]. The data of 
thermal conductivity and 28-day compressive strength 
of concrete foaming by different amounts of H2O2 in 
each study are fitting and summarized in Table 2, and 
these data are presented in Figure 2. The data points 
in Figure 2 scatter in a wide range because they are 
from different concrete mixtures with different H2O2 
amounts. The majority of lower boundary data are 
obtained from [31], which is the best performance in 
Figure 2. 

To investigate which paste is better for application, 
Table 2 summarizes the reported concrete foaming by 
H2O2 and the fitting function of thermal conductivity and 
28-day compressive strength in each corresponding 
literature, similar to that foamed by aluminum powder in 
Table 1. The range of gradient is 0.003-0.130. 

2.1.3. Other Foaming Agents 

Silica powder was also used as a foaming agent in 
some research [48, 49], and it was not only a foaming 
agent but also a binder. The foaming is obtained by: 

Si(s)+ 4H 2O(l)! Si(OH )4 (aq)+ 2H 2 (g)         (4) 

Silica carbide sludge also contains some silica 
powder, which is also used as a foaming agent [50]. In 
addition, other materials have also been used as 
foaming materials, like Na2O2 [51], sodium perborate 
[52], sodium carbonate [53], and recycled aluminum foil 
powder [29]. The reported thermal conductivity and the 
strength with different foaming agents content in each 

corresponding literature fit using linear regression, and 
the fitting function is summarized in Table 3. The 
gradient of the linear function from 0.009 to 0.099. The 
lowest gradient of these data points in these cited 
references is achieved by [54] and the highest gradient 
is achieved by [55] with Silicon powder as a foaming 
agent and Fly ash and expanded clay-based 
geopolymer as the paste.  

2.2. Mechanical Foaming 

Mechanical foaming is to use of foaming equipment 
to process plant or animal proteins to create foam 
which is directly added to the concrete mixture [12-15]. 
In general, mechanical foaming will reduce thermal 
conductivity and 28-day compressive strength at the 
same time. The reported thermal conductivity and 28-
day compressive strength of concrete with different 
mechanical foaming methods are presented in Figure 
3. The relationship between the thermal conductivity 
and strength is best described with a linear function 
which is presented in Table 4, that shows the gradient 
of the linear function from 0.004 to 0.121. It can be 
seen in Figure 3 that the best performance of mixtures 
is obtained from the fly ash and blast furnace slag-
based geopolymer foamed by a diluted aqueous 
surface-active concentrate [56]. 

3. EFFECTS OF LIGHTWEIGHT AGGREGATES 

Using lightweight aggregates is another effective 
way to reduce the thermal conductivity of concrete to 
improve its insulation performance. Generally, concrete 
with lightweight aggregates may have greater strength 
than foamed concrete, given the same thermal 
conductivity [2]. This section will analyze the effects of 
various lightweight aggregates on concrete's thermal 
conductivity and strength. 

3.1. Cenospheres 

Cenospheres are suitable as lightweight aggregates 
because they are high in shell wall strength and low in 

Table 1: Linear Relationship between the Thermal Conductivity and 28-Day Compressive Strength of Concrete with 
Foaming by Aluminum Powders 

Description of pastes Linear fitting Ref. 

Metakaolin-based geopolymer y=0.023x+0.143 (R 2=0.93) [11]  

y=0.021x+0.071 (R 2=0.754) 
Fly ash and metakaolin-based geopolymer 

y=0.022x+0.066 (R 2=0.564) 
[28]  

Metakaolin-based geopolymer y=0.039x+0.134 (R 2=0.8) [29]  

Fly ash based geopolymer y=0.054x−0.007 (R 2=0.99) [30]  



Relationship between Thermal Conductivity and Compressive Journal of Research Updates in Polymer Science, 2023, Vol. 12      83 

Table 2: Linear Relationship between the Thermal Conductivity and 28-Day Compressive Strength of Concrete with 
Foaming by Hydrogen Peroxide 

Composition of mixtures 

Type Matrix 
Linear fitting Ref. 

Metakaolin-based geopolymer y=0.018x+0.387 (R 2=0.87) 

10 wt.% glass-metakaolin-based 
geopolymer y=0.016!+0.39 (R 2=0.99) 

20 wt.% glass-metakaolin-based 
geopolymer y=0.008x+0.452 (R 2=0.44) 

30 wt.% glass-metakaolin-based 
geopolymer y=0.019x+0.413 (R 2=0.94) 

Paste 

40 wt.% glass-metakaolin-based 
geopolymer y=0.016x+0.392 (R 2=0.76) 

[5] 

Mortar Fly ash-metakaolin-based geopolymer y=0.041x+0.087 (R 2=0.40) [8]  

y=0.003x+0.120 (R 2=0.98) 

y=0.003x+0.134 (R 2=0.999) 

y=0.003x+0.123 (R 2=0.80) 
Paste Slag-based geopolymer 

y=0.006x+0.116 (R 2=0.99) 

[31]  

Paste Fly ash-rice husk-based geopolymer y=0.015x+0.088 (R 2=0.98) [32]  

Paste Kaolinite-based geopolymer y=0.025x+0.044 (R 2=0.976) [33]  

Concrete 

(sawdust biomass) 
Metakaolin-based geopolymer y=0.003x+0.109 (R 2=0.909) [34]  

Paste Magnesium phosphate cement y=0.011x+0.135 (R 2=0.95) [35]  

Paste Fly ash and cement y=0.034x+0.041 (R 2=0.946) [36]  

Paste Metakaolin and fly ash-based geopolymer y=0.048x+0.032 (R 2=0.95) [37]  

Paste Metakaolin-based geopolymer y=0.015x+0.091 (R 2=0.98) [38] 

Paste Metakaolin-based geopolymer y=0.006x+0.110 (R 2=0.95) [39] 

y=0.038x+0.023 (R 2=0.68) 

y=0.019x+0.044 (R 2=0.998) Paste 

y=0.021x+0.041 (R 2=0.90) 

y=0.012x+0.039 (R 2=0.979) Concrete (hollow glass 
bubbles) 

Fly ash-based geopolymer 

y=0.010x+0.043 (R 2=0.884) 

[40]  

Paste Fly ash-blast furnace slag-based 
geopolymer y=0.010x+0.179 (R 2=0.95) [41]  

Paste Fly ash and cement y=0.049x+0.121 (R 2=0.795) [42]  

Paste Pitchstone-based geopolymer y=0.008x+0.060 (R 2=0.956) [43]  

Paste Metakaolin-based geopolymer y=0.012x+0.105 (R 2=0.34) [44]  

y=0.011x+0.076 (R 2=0.70) 
Paste Perlite wastes-based geopolymer 

y=0.007x+0.090 (R 2=0.997) 
[45] 

Paste Metakaolin-based geopolymer y=0.130x−0.009 (R 2=0.211) [46]  

Paste Calcined phosphogypsum y=0.123x−0.478 (R 2=0.951) [47]  
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Figure 2: (a) the relationship between thermal conductivity and 28-day compressive strength of concrete with hydrogen peroxide 
as a foaming agent, (b) zoomed in from 0 to 5 MPa. 

 

Table 3: Linear Relationship between the Thermal Conductivity and 28-Day Compressive Strength of Concrete with 
other Different Foaming Agents 

Composition of pastes Foaming agents Linear fitting Ref. 

Metakaolin-based geopolymer  Municipal solid waste 
incineration bottom ash y=0.040x+0.147 (R 2=0.7) [29]  

Metakaolin-based geopolymer Na2O2 y=0.032x+0.064 (R 2=0.678) [51]  

Fly ash-based geopolymer Sodium bicarbonate y=0.009x+0.118 (R 2=0.97) [54]  

Fly ash-based geopolymer Silicon powder y=0.062x+0.130 (R 2=1) 

Fly ash and expanded clay-based 
geopolymer Silicon powder y=0.099x−0.043 (R 2=0.984) 

[55] 

 

 
Figure 3: The relationship between thermal conductivity and 
28-day compressive strength of concrete with different 
mechanical foaming materials. 

thermal conductivity [16]. Glass microspheres and fly 
ash are two typical examples of cenospheres [17-19]. 

Glass microspheres and fly ash have pozzolanic 
activity, especially in alkaline condition under high 
temperature, while the reactivity is limited when the 
temperature is low [61]. Adding a small number of 
cenospheres in the concrete mixture helps reduce the 
thermal conductivity, and they have a filling effect, so 
they can also improve the strength. However, after the 
amount of cenospheres exceeds a certain limit, the 
concrete strength will decrease because these 
cenospheres increase the voids in concrete. On the 
other hand, more cenospheres can yield lower thermal 
conductivity, although the strength decreases. There is 
also research on replacing sand with cenospheres in 
concrete [62] which suggested that the cenospheres 
with higher crushing strength and smaller wall 
thickness were more helpful in achieving higher 
concrete strength and lower thermal conductivity. 

The experimental studies with cenospheres are 
reviewed, and the reported thermal conductivity and 
28-day compressive strength of concrete in different 
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references are shown in Figure 4. It can be seen that 
the lower boundary corresponds to metakaolin-based 
geopolymer composites with fly ash cenosphere [19]. 
The lower boundary means the same 28-days 
compressive strength with the lowest thermal 
conductivity, so metakaolin-based geopolymer 
composites mixed with fly ash cenosphere has the best 
performance in Figure 4. Generally, the relationship 
between thermal conductivity and 28-day compressive 
strength can be fitted using a linear function as 
summarized in Table 5. The gradient is from 0.003 to 
1.59, and the highest gradient is 1.59, obtained from 
[63]. This indicates that the expanded glass granules 
can be the best choice in these cenospheres in Table 5 
when applied in insulation concrete. This is because 
the high gradient means that the thermal conductivity 
decreases faster than the 28-day compressive 
strength. 

3.2. Inorganic Porous Aggregates 

Inorganic porous aggregates can effectively reduce 
the thermal conductivity of concrete because of their 
high porosity. Another benefit of the inorganic porous 
aggregates is that they have a better bond with the 

concrete matrix than the organic aggregates. Common 
inorganic porous aggregates include clay [65], perlite 
[20], pumice [66], vermiculite [67], and bentonite [68].  

These reported data are fitted with linear functions 
as summarized in Table 6. The gradient of these 

Table 4: Linear Relationship between the Thermal Conductivity and 28-Day Compressive Strength of Concrete with 
Different Mechanical Foaming Materials 

Composition of mixture 

Type Matrix 

Materials used to 
produce mechanical 

foaming 
Linear fitting Ref. 

Concrete 
(oil palm shell) 

Low-calcium fly ash and 
palm oil fuel ash-based 

geopolymer 
Sika AER-50/50 y=0.004x+0.442 (R 2=0.954) [12]  

Paste Fly ash and blast furnace 
slag-based geopolymer 

A diluted aqueous 
surface active 
concentrate 

y=0.008x+0.139 (R 2=0.889) [56]  

Paste 
Phosphogypsum: fly ash: 
cement: hydrated lime(49: 

20: 25:6) 

A locally available plant-
based foaming agent y=0.023x+0.061 (R 2=0.863) [57]  

Blast furnace slag-based 
geopolymer y=0.031x+0.067 (R 2=0.935) 

Fly ash and blast furnace 
slag-based geopolymer y=0.022x+0.073 (R 2=0.781) Paste 

Blast furnace slag-based 
geopolymer 

Protein with enzymatic 
active components 

y=0.052x+0.036 (R 2=0.908) 

[58]  

Paste Fly ash-based geopolymer Animal protein y=0.121x−0.033 (R 2=0.98) [59]  

y=0.019x+0.240 (R 2=0.970) 

y=0.020x+0.224 (R 2=0.970) Cement 

y=0.020x+0.220 (R 2=0.946) 

y=0.008x+0.512 (R 2=−0.461) 

y=0.018x+0.055 (R 2=0.968) 

Concrete 

Cement and silica fume 

Protein-based foam 
agent 

y=0.020x−0.089 (R 2=0.857) 

[60]  

 
Figure 4: The relationship between thermal conductivity and 
28-day compressive strength of concrete with different 
cenospheres. 
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Table 5: Linear Relationship between the Thermal Conductivity and 28-Day Compressive Strength of Concrete with 
Different Cenospheres 

Matrix of concrete Types of cenosphere Linear fitting Ref. 

Cement Vitrified microspheres y=0.027x+0.059 (R 2=0.998) [16]  

Metakaolin-based geopolymer Fly ash cenosphere y=0.003x+0.059 (R 2=0.96) [19]  

Hollow glass microsphere (HGM) 
bubbles K25 y=0.034x−0.157 (R 2=0.969) 

HGM S32 y=0.067x−1.817 (R 2=0.863) 

HGM S38HS y=0.041x−0.691 (R 2=0.188) 

HGM H50 y=0.056x−1.901 (R 2=−0.034) 

HGM S60 y=0.059x−2.015 (R 2=0.17) 

Fly-ash cenospheres(FAC) E106 y=0.02x+0.164 (R 2=−0.276) 

FAC E160 y=0.002x+1.168 (R 2=−0.498) 

Cement 

FAC E200/600 y=0.094x−2.552 (R 2=0.579) 

[62]  

Lime y=1.590x−0.397 (R 2=0.834) 

Natural hydraulic lime y=0.568x−1.1447 (R 2=0.989) 

Lime-cement 

Expanded glass granules 

y=0.235x−0.711 (R 2=0.998) 

[63]  

y=0.069x−0.389 (R 2=0.977) 
Cement and fly ash Glass bubble 

Y=0.021x+0.633 (R 2=0.874) 
[64]  

 
Table 6: Linear Relationship between the Thermal Conductivity and 28-Day Compressive Strength of Concrete with 

Different Inorganic Porous Aggregates 

Matrix of concrete Types of aggregate Linear fitting Ref. 

Concrete Expanded perlite y=0.026x+0.209 (R 2=0.711) [20] 

Concrete Expanded clay y=0.031x+0.116 (R 2=0.847) [65]  

Magnesium oxychloride 
cement and fly ash Expanded perlite y=0.019x−0.228 (R 2=0.844) [69]  

y=0.184x−0.177 (R 2=0.391) 
Cement Expanded perlite 

y=1.495x−1.258 (R 2=0.911) 
[70]  

y=0.036x+0.401 (R 2=0.970) 
Non-graded expanded perlite with aerogel 

y=0.098x+0.108 (R 2=0.246) 

y=0.076x−0.140 (R 2=0.847) 
Graded expanded perlite with aerogel 

y=0.094x+0.111 (R 2=0.439) 

Cement and silica fume 

Non-graded expanded perlite y=0.154x−0.145 (R 2=0.792) 

[71]  

 

functions is from 0.019 to 1.495, with the lowest 
gradient from [69] and the highest gradient from [70]. It 
shows that the expanded perlite is the best choice in 
these inorganic porous aggregates in Table 6 to be 
applied in insulation concrete. 

3.3. Organic Porous Aggregates 

Similar to inorganic porous aggregates, organic 
porous aggregates can also reduce the thermal 

conductivity of concrete through porosity. Common 
organic porous aggregates include polyurethane [72, 
73], polyethylene terephthalate (PET) [9, 74, 75], 
polystyrene [76, 77], polycarbonate [78], recycled 
packaging foam [79], crumb rubber [80], recycled 
polyvinyl chloride [81]. The reported thermal 
conductivity and strength data of concrete with various 
organic porous aggregates are plotted in Figure 5 and 
summarized in Table 7. Figure 5 presents that the data 
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scatter different from those in Figure 5 for inorganic 
porous aggregates. This may be because the strength 
of concrete with different inorganic porous aggregates 

depends not only on the porosity but the bond between 
aggregates and matrix, for the bond between organic 
porous aggregates and concrete may be less 
consistent than that of inorganic porous aggregates. 
The low boundary data are mostly from [82], and this 
best performance concrete is a mixture of waste 
expanded polystyrene as aggregate with cement and 
resin. 

Table 7 shows the linear fitting functions of these 
data. The gradient of the function is from 0.014 to 
0.313. The highest gradient (i.e., 0.313) in this table is 
achieved by [72], and the best performance of organic 
porous aggregate is rigid polyurethane foam wastes in 
Table 7. 

3.4. Aerogel  

Aerogel has attracted increasing attention for 
making insulation materials for its low thermal 
conductivity and lightweight property [88]. The most 
commonly used aerogel is silica aerogel [89, 90]. It is 
found that [91] when the aerogel is less than 1 wt.% in 

 
Figure 5: The relationship between thermal conductivity and 
28-day compressive trength of concrete with different organic 
porous aggregates. 

Table 7: Linear Relationship between the Thermal Conductivity and 28-Day Compressive Strength of Concrete with 
Different Organic Porous Aggregates 

Matrix of concrete Organic porous aggregates Linear fitting Ref. 

Cement Expanded polystyrene (2.5 mm) y=0.046x+0.256 (R 2=0.989) 

Cement Expanded polystyrene (1mm) y=0.049x+0.103 (R 2=0.996) 

Cement Thermoplastic microsphere (35-55 
µm) y=0.036x+0.199 (R 2=0.976) 

[62]  

Cement y=0.076x+0.399 (R 2=0.742) 

Cement and limestone filler 
Rigid polyurethane foam wastes 

y=0.313x+0.302 (R 2=0.619) 
[72]  

Cement Polyurethane foam waste y=0.021x +0.621 (R 2=0.986) [73]  

Polyethylene terephthalate (0.1 mm, 
density: 214 kg/m3) y=0.039x+0.115 (R 2=0.915) 

Cement 
Polyethylene terephthalate (1mm, 

density: 547 kg/m3) y=0.031x+0.084 (R 2=0.991) 
[74]  

Cement Waste PET lightweight aggregate y=0.014x+0.278 (R 2=0.907) [75]  

High calcium fly ash-based 
geopolymer 

Recycled packaging foam (2.36-4.75 
mm, 215 kg/m3) y=0.020x+0.162 (R 2=0.73) [79]  

Cement Recycled polyvinyl chloride y=0.086x−2.236 (R 2=0.918) [81]  

Cement y=0.021x+0.029 (R 2=0.973) 

Cement and 0.5 % resin y=0.021x+0.048 (R 2=0.983) 

Cement and 1.0 % resin y=0.025x+0.052 (R 2=0.959) 

Cement and 1.5 % resin 

Waste expanded polystyrene 

y=0.041x+0.049 (R 2=0.964) 

[82]  

Metakaolin-based geopolymer Polystyrene particles y=0.035x−0.072 (R 2=0.997) [83]  

Cement and fly ash Expanded polystyrene particles 
(<6.5 mm, density: 16.6 kg/m3) y=0.099x+0.069 (R 2=0.932) [84]  

Cement Expanded polystyrene y=0.042x+0.116 (R 2=0.996) [85]  

Cement and silica fume Expanded polystyrene y=0.019x−0.031 (R 2=0.751) [86]  

Fly ash geopolymer Recycled Non-Biodegradable 
polyethylene terephthalate waste y=0.030x+0.266 (R 2=0.904) [87]  
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the concrete mixture, it has a negligible effect on the 
28-day compressive strength, but the strength 
significantly drops if more aerogel is added. Currently, 
there are not many studies on concrete with aerogel for 
insulation purposes. The reported thermal conductivity 
and strength data of concrete with aerogel are plotted 
in Figure 6 and summarized in Table 8. The low 
boundary of these data is achieved by [92], which has 
the best matrix for aerogel made by fly ash, cement, α-
hemihydrate gypsum, and lime (1:3:9:0.6). Table 8 
shows the gradient of the fitting function is from 0.006 
to 0.064. The best performance of silica aerogel in 
Table 8 is achieved in [89] for its highest gradient. 

3.5. Phase Change Materials 

Phase change materials can also be used for 
making insulation concrete [97]. Insulation is achieved 
through a phase change, i.e., from liquid at high 
temperature and absorbing heat, to solid at low 
temperature and releasing heat [98-101]. Phase 
change materials are also used to fill the pores of the 
porous aggregates to reduce thermal conductivity 
[102]. In general, phase change materials have a 
negative effect on the 28-day compressive strength of 
concrete [103-107]. The reported thermal conductivity 
and strength data of concrete with phase change 
materials are summarized in Table 9. The low 
boundary data is obtained from [108], which shows that 
this concrete has the lowest thermal conductivity at the 
same strength. In Table 9, the gradient of the fitting 
function is from 0.008 to 0.025. The highest gradient is 
achieved by [109] which has the best performance of 
phase change materials. 

3.6. Other Lightweight Aggregates 

Many other types of materials can be used as 
lightweight aggregates to reduce the thermal 
conductivity of concrete, such as clay [110], glass 
[110], oil palm shells [111], and waste rubber [88, 112]. 
The reported thermal conductivity and strength data of 
concrete with these aggregates are summarized in 
Table 10 and plotted in Figure 7. In Figure 7, the low 
boundary is obtained from [34], which is the best-
performance concrete using metakaolin-based 

 
Figure 6: The relationship between thermal conductivity and 
28-day compressive strength of concrete with different 
aerogels. 

Table 8: Linear Relationship between the Thermal Conductivity and 28-Day Compressive Strength of Concrete with 
Different Aerogels 

Matrix of concrete Type of aerogel Linear fitting Ref. 

Cement  y=0.034x−0.038 (R 2=0.778) 

80 wt.% cement and 20 wt.% 
pozzolan 

Silica aerogel 
y=0.064x−0.003 (R 2=0.929) 

[89]  

Cement  Hydrophobic aerogel granules y=0.032x+0.076 (R 2=0.983) [90]  

Cement and silica fume Silica aerogels y=0.017x−0.004 (R 2=0.841) [91] 

Fly ash:cement: α- hemihydrate 
gypsum: lime = 1:3:9:0.6 Silica aerogel y=0.006x+0.079 (R 2=0.954) [92] 

Fly ash-based geopolymers Silica aerogel y=0.025x+0.043 (R 2=0.938) [93]  

Cement and silica fume Hydrophobic aerogel y=0.019x+0.212 (R 2=0.982) [94]  

Ultra-high performance concrete y=0.011x+0.358 (R 2=0.937) 

Cement and silica fume 

A hydrophobic 
aerogel y=0.019x+0.214 (R 2=0.982) 

[95]  

Cement y=0.009x+0.494 (R 2=0.021) 

Cement and 3 wt.% hydrogen 
peroxide 

Micro-sized aerogel powder 
y=0.007x+0.203 (R 2=−0.954) 

[96]  
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geopolymers as the matrix and sawdust biomass as 
lightweight aggregate. In Table 10, the gradient of the 
function is from 0.003 to 0.169. Virgin cork in [113] has 
great potential as a lightweight aggregate for its highest 
gradient in these aggregates. The highest gradient 
means that the aggregate can reduce the thermal 
conductivity with minimum decrease in compressive 
strength. 

4. SUMMARY AND DISCUSSIONS 

Generally, foaming can be obtained through 
chemical agents or mechanical processing. As for 
chemical agents, there are aluminum powder, 
hydrogen peroxide, and other foaming agents. 
Foaming reduces the thermal conductivity of concrete 
to improve its insulation performance, but it also 
reduces the compressive strength of concrete. The 

Table 9: Linear Relationship between the Thermal Conductivity and 28-Day Compressive Strength of Concrete with 
Phase Change Materials 

Type of compositions Type of phase change material Extracted correlation Ref. 

Cementitious mortar A novel paraffin/hydrophobic expanded 
perlite composite phase change material y=0.020x+0.747 (R 2=0.935) [107]  

Cementitious composite Microencapsulated phase change materials y=0.008x+0.680 (R 2=0.904) [108]  

Cementitious concrete y=0.024x+0.883 (R 2=0.975) 

Cementitious mortar 
Micro-encapsulated phase change materials 

y=0.025x+0.506 (R 2=0.894) 
[109]  

 
Table 10: Linear Relationship between the Thermal Conductivity and 28-Day Compressive Strength of Concrete with 

other Different Aggregates 

Composition of Concrete 

Matrix Type of aggregates 
Linear fitting Ref. 

Metakaolin-based geopolymers Sawdust biomass y=0.003x+0.123 (R 2=0.858) [34]  

Cement and 5% Class-F (low 
calcium) and 10% silica fume  Oil palm shell y=0.012x+0.348 (R 2=0.731) [111]  

Cement  Waste rubber y=0.017x+0.577 (R 2=0.90) [112]  

Cement  Virgin cork y=0.169x+0.027 (R 2=0.988) [113]  

Cement and 20% silica fume Vegetable synthetic sponge 
wastes y=0.019x+0.316 (R 2=0.86) [114]  

Cement and clay Wood y=0.046x+0.017 (R 2=0.914) [115]  

Cement and fly ash Expanded cork granules and 
expanded clay y=0.031x+0.046 (R 2=0.998) [116] 

Metakaolin-based geopolymers Cork y=0.029x+0.076 (R 2=0.98) [117] 

Fly ash-based geopolymer Multifunctional cork y=0.028x+0.075 (R 2=0.995) [118] 

Cement 

Bio-based lightweight aggregate 
(indirect carbonization of 

plant residues from agriculture 
productions) 

y=0.075x−0.949 (R 2=0.978) [119] 

Clay and cement Wood aggregates y=0.053x+0.080 (R 2=0.881) [120] 

5 wt.% silica fume and 95 wt.% 
cement y=0.023x+1.134 (R 2=0.877) 

10 wt.% silica fume and 90 wt.% 
cement y=0.028x+0.897 (R 2=0.974) 

15 wt.% silica fume and 85 wt.% 
cement y=0.049x+0.229 (R 2=0.826) 

20 wt.% silica fume and 80 wt.% 
cement 

Waste rubber powder 

y=0.039x+0.651 (R 2=0.994) 

[121]  

Cement Rubber particles y=0.010x+0.397 (R 2=0.941) [122]  

Sulfur aluminate cement y=0.009x+0.119 (R 2=0.911) 

Ordinary Portland cement y=0.011x+0.145 (R 2=0.75) 

Granulated blast furnace slag 

Waste wood chips 

y=0.008x+0.126 (R 2=0.933) 

[123]  
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best insulation concrete should have the lowest thermal 
conductivity at the same 28-day compressive strength. 
The best chemical foaming concrete by aluminum 
powder, hydrogen peroxide, and other foaming agents 
are made by fly ash and metakaolin-based 
geopolymer, slag-based geopolymer, and fly ash-
based geopolymer foamed by sodium bicarbonate, 
respectively. The best mechanical foaming concrete is 
fly ash and blast furnace slag-based geopolymer 
foamed by a diluted aqueous surface-active 
concentrate.  

 
Figure 7: The relationship between thermal conductivity and 
28-day compressive strength of concrete with different 
aggregates. 

The thermal conductivity and strength of foamed 
concrete in cited references are fitted using a linear 

function to evaluate the effect of the foaming method. 
As seen from Tables 1 to 4, the gradients range of the 
linear functions of the thermal conductivity and strength 
are 0.021-0.054, 0.003-0.130, and 0.009-0.099 for 
aluminum powder, hydrogen peroxide, or other foaming 
agents, respectively. The gradient of mechanical 
foaming is from 0.004 to 0.121. Therefore, it indicates 
that hydrogen peroxide had the highest gradient and is 
the best foaming agent in these foaming methods. 

Aggregates account for a large proportion of 
concrete mixture, so they significantly affect the 
thermal conductivity and strength of concrete. As for 
the aggregates in this section, the gradients range of 
the linear fitted functions in the cited reference is 0.003-
1.59, 0.019-1.495, 0.014-0.313, 0.006-0.064, and 
0.008-0.025 for concrete mixed with cenospheres, 
inorganic porous aggregates, organic porous 
aggregates, aerogels, and phase change materials, 
respectively. Cenospheres that had the maximum 
gradient may be the most suitable lightweight 
aggregates for making insulation concrete with 
relatively lower thermal conductivity but higher 
strength. It can also be seen that the maximum 
gradient of lightweight aggregates is higher than 
foaming methods.  

It can be seen from the above review that foaming 
and porous aggregates can be used to reduce the 
thermal conductivity of concrete. However, these 
methods may have a negative effect on concrete 
strength. Figure 8 present all data from the above 
figures, and it gives us the best performance under 

    
Figure 8: (a) The relationship between thermal conductivity and 28-day compressive strength of the best performance 
compositions, (b) zoomed in from 0 to 20 MPa. 
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different strength required. When the strength of 
insulation material is needed to be lower than 6MPa, 
organic porous aggregate is the best, and at the range 
of 6-15MPa, 15-35MPa, and more than 35MP, the best 
is aerogel, hydrogen peroxide, and cenosphere, 
respectively. It may help guide the development and 
design of new insulation concrete with low thermal 
conductivity and high strength. 

5. CONCLUSIONS 

The compressive strength and thermal conductivity 
are two important parameters of insulation concrete. 
Theoretically the compressive strength and thermal 
conductivity is not directedly related. But a clear trend 
has been observed from this review that the thermal 
conductivity increases with strength. Perhaps higher 
strength means denser microstructure, less voids 
making the material a better thermal conductor. But the 
discussion of the underlying mechanism of this 
observation is beyond the scope of this paper. This 
work focuses more on the relationship of these two 
parameters, and looks at how to improve the insulation 
property of concrete while maintaining its strength. The 
effects of foaming methods and lightweight aggregates 
are analyzed by correlating the thermal conductivity 
and strength of concrete. Based on the review, the 
following conclusions can be drawn: 

1. Generally, the relationship between thermal 
conductivity and 28-day compressive strength of 
concrete can be fitted by a linear function, 
regardless of directly introducing more bubbles 
through a foaming agent or by adding more 
lightweight aggregate. In other words, it is 
difficult to achieve simultaneously low thermal 
conductivity and high strength of concrete. For 
this reason, it is recommended to emphasize the 
methods in the literature, which yield a higher 
gradient of the linear function of the thermal 
conductivity and strength because these results 
indicate concrete mixtures with relatively lower 
thermal conductivity and higher strength. 

2. As for the foaming methods, chemical foaming 
using hydrogen peroxide is the most effective to 
produce concrete with relatively lower thermal 
conductivity and higher compressive strength. Its 
perfect performance also needs matching with 
constituent materials such as slag based 
geopolymer. 

3. For concrete with lightweight aggregates, 
cenospheres are the best option. Lightweight 

aggregate contributes more in decreasing the 
thermal conductivity and maintaining the strength 
than foaming methods. 

The following research gaps are also identified from 
this review: 

1. The interaction mechanism of strength 
development and thermal insulation from the 
perspective of hydration kinetics should be 
investigated and clarified. 

2. The pore parameters, like the shape and size of 
various foaming methods, should be 
characterized and correlated to the thermal 
insulation and strength of concrete. 

3. New lightweight and porous aggregates need to 
be developed to achieve better insulation and 
strength of concrete simultaneously. This is 
because aggregates account for the most 
significant proportion of concrete, whose 
properties are greatly determined by the 
aggregates. 

4. It is recommended that the underlying 
mechanism of the relationship between 
compressive strength and thermal conductivity 
be analyzed in future research. 
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