15 research outputs found

    Correlating the Efficiency and Nanomorphology of Polymer Blend Solar Cells Utilizing Resonant Soft X-ray Scattering

    No full text
    Enhanced scattering contrast afforded by resonant soft X-ray scattering (R-SoXS) is used to probe the nanomorphology of all-polymer solar cells based on blends of the donor polymer poly(3-hexylthiophene) (P3HT) with either the acceptor polymer poly((9,9-dioctylfluorene)-2,7-diyl-<i>alt</i>-[4,7-bis(3-hexylthien-5-yl)-2,1,3-benzothiadiazole]-2′,2″-diyl) (F8TBT) or poly([<i>N</i>,<i>N</i>′-bis(2-octyldodecyl)-11-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-<i>alt</i>-5,5′-(2,2′-12-bithiophene)) (P(NDI2OD-T2)). Both P3HT:F8TBT and P3HT:P(NDI2OD-T2) blends processed from chloroform with subsequent annealing exhibit complicated morphologies with a hierarchy of phase separation. A bimodal distribution of domain sizes is observed for P3HT:P(NDI2OD-T2) blends with small domains of size ∼5–10 nm that evolve with annealing and larger domains of size ∼100 nm that are insensitive to annealing. P3HT:F8TBT blends in contrast show a broader distribution of domain size but with the majority of this blend structured on the 10 nm length scale. For both P3HT:P(NDI2OD-T2) and P3HT:F8TBT blends, an evolution in device performance is observed that is correlated with a coarsening and purification of domains on the 5–10 nm length scale. Grazing-incidence wide-angle X-ray scattering (GI-WAXS) is also employed to probe material crystallinity, revealing P(NDI2OD-T2) crystallites 25–40 nm in thickness that are embedded in the larger domains observed by R-SoXS. A higher degree of P3HT crystallinity is also observed in blends with P(NDI2OD-T2) compared to F8TBT with the propensity of the polymers to crystallize in P3HT:P(NDI2OD-T2) blends hindering the structuring of morphology on the sub-10 nm length scale. This work also underscores the complementarity of R-SoXS and GI-WAXS, with R-SoXS measuring the size of compositionally distinguishable domains and GI-WAXS providing information regarding crystallinity and crystallite thickness

    Solution-Phase Conformation and Dynamics of Conjugated Isoindigo-Based Donor–Acceptor Polymer Single Chains

    No full text
    Conjugated polymers are the key material in thin-film organic optoelectronic devices due to the versatility of these molecules combined with their semiconducting properties. A molecular-scale understanding of conjugated polymers is important to the optimization of the thin-film morphology. We examine the solution-phase behavior of conjugated isoindigo-based donor–acceptor polymer single chains of various chain lengths using atomistic molecular dynamics simulations. Our simulations elucidate the transition from a rod-like to a coil-like conformation from an analysis of normal modes and persistence length. In addition, we find another transition based on the solvent environment, contrasting the coil-like conformation in a good solvent with a globule-like conformation in a poor solvent. Overall, our results provide valuable insights into the transition between conformational regimes for conjugated polymers as a function of both the chain length and the solvent environment, which will help to accurately parametrize higher level models

    Microstructural Evolution of the Thin Films of a Donor–Acceptor Semiconducting Polymer Deposited by Meniscus-Guided Coating

    No full text
    Crucial to the development and refinement of organic electronics is a fundamental understanding of how deposition processes affect the active material’s resulting microstructure in the thin film. Meniscus-guided coating (MGC) methods are attractive because of their amenability to high-throughput, industrially relevant continuous processes like roll-to-roll deposition, but the mechanism of solid film formation has not been elucidated and is valuable for the precise control of thin-film morphology and thus ultimate device performance. In this work, we investigate the microstructural evolution of thin films of a diketopyrrolopyrrole–terthiophene donor–acceptor polymer semiconductor using both <i>in situ</i> and <i>ex situ</i> X-ray diffraction methods. On the basis of a comparison of disorder between the film bulk and the top surface and a depth profiling of the out-of-plane orientation of crystallites, we find that faster coating speeds introduce more disorder into the resulting films because the stochastic nucleation of disordered crystallites at the meniscus air–liquid interface becomes more dominant than substrate-mediated nucleation. Our results suggest that there exist three separate deposition regimesnamely the shear-dominate, disorder-dominate, and Landau–Levich–Derjaguin regimesrevealed by observing both polymer alignment via dry film thickness and optical dichroism, a property sensitive to the flow and shear fields. At low coating speeds, the shear strain imparted upon the solution directly induces polymer alignment, causing an increase in dichroism as a function of coating speed. When solvent evaporation becomes too rapid as coating speeds increase, a decrease in the dichroic ratio is observed before the classical Landau–Levich–Derjaguin regime occurs at the highest coating speeds, resulting in isotropic films. The preservation of out-of-plane crystalline texture throughout the thickness of the films is seen only for lower coating speeds, and a study of different deposition temperatures similarly indicates that the lower overall solvent evaporation is conducive to this process. Increased paracrystalline disorder (i.e., peak broadening) is observed by grazing-incidence wide-angle X-ray diffraction at the top interface of the dry films and at higher coating speeds. Together, these results indicate that more rapid solvent evaporation at higher coating speeds causes increased disorder, which can cause the nucleation of misaligned crystallites, affect the dichroic ratio, and may frustrate the alignment of polymer molecules in the amorphous regions of the film. Because the polymer studied and the deposition technique used are representative models, these results are likely general for aggregating, semicrystalline donor–acceptor polymers deposited with MGC

    Solution-Phase Conformation and Dynamics of Conjugated Isoindigo-Based Donor–Acceptor Polymer Single Chains

    No full text
    Conjugated polymers are the key material in thin-film organic optoelectronic devices due to the versatility of these molecules combined with their semiconducting properties. A molecular-scale understanding of conjugated polymers is important to the optimization of the thin-film morphology. We examine the solution-phase behavior of conjugated isoindigo-based donor–acceptor polymer single chains of various chain lengths using atomistic molecular dynamics simulations. Our simulations elucidate the transition from a rod-like to a coil-like conformation from an analysis of normal modes and persistence length. In addition, we find another transition based on the solvent environment, contrasting the coil-like conformation in a good solvent with a globule-like conformation in a poor solvent. Overall, our results provide valuable insights into the transition between conformational regimes for conjugated polymers as a function of both the chain length and the solvent environment, which will help to accurately parametrize higher level models

    Solution-Phase Conformation and Dynamics of Conjugated Isoindigo-Based Donor–Acceptor Polymer Single Chains

    No full text
    Conjugated polymers are the key material in thin-film organic optoelectronic devices due to the versatility of these molecules combined with their semiconducting properties. A molecular-scale understanding of conjugated polymers is important to the optimization of the thin-film morphology. We examine the solution-phase behavior of conjugated isoindigo-based donor–acceptor polymer single chains of various chain lengths using atomistic molecular dynamics simulations. Our simulations elucidate the transition from a rod-like to a coil-like conformation from an analysis of normal modes and persistence length. In addition, we find another transition based on the solvent environment, contrasting the coil-like conformation in a good solvent with a globule-like conformation in a poor solvent. Overall, our results provide valuable insights into the transition between conformational regimes for conjugated polymers as a function of both the chain length and the solvent environment, which will help to accurately parametrize higher level models

    A Wide Band Gap Polymer with a Deep Highest Occupied Molecular Orbital Level Enables 14.2% Efficiency in Polymer Solar Cells

    No full text
    To simultaneously achieve low photon energy loss (<i>E</i><sub>loss</sub>) and broad spectral response, the molecular design of the wide band gap (WBG) donor polymer with a deep HOMO level is of critical importance in fullerene-free polymer solar cells (PSCs). Herein, we developed a new benzodithiophene unit, i.e., DTBDT-EF, and conducted systematic investigations on a WBG DTBDT-EF-based donor polymer, namely, PDTB-EF-T. Due to the synergistic electron-withdrawing effect of the fluorine atom and ester group, PDTB-EF-T exhibits a higher oxidation potential, i.e., a deeper HOMO level (ca. −5.5 eV) than most well-known donor polymers. Hence, a high open-circuit voltage of 0.90 V was obtained when paired with a fluorinated small molecule acceptor (IT-4F), corresponding to a low <i>E</i><sub>loss</sub> of 0.62 eV. Furthermore, side-chain engineering demonstrated that subtle side-chain modulation of the ester greatly influences the aggregation effects and molecular packing of polymer PDTB-EF-T. With the benefits of the stronger interchain π–π interaction, the improved ordering structure, and thus the highest hole mobility, the most symmetric charge transport and reduced recombination are achieved for the linear decyl-substituted PDTB-EF-T (P2)-based PSCs, leading to the highest short-circuit current density and fill factor (FF). Due to the high Flory–Huggins interaction parameter (χ), surface-directed phase separation occurs in the P2:IT-4F blend, which is supported by X-ray photoemission spectroscopy results and cross-sectional transmission electron microscope images. By taking advantage of the vertical phase distribution of the P2:IT-4F blend, a high power conversion efficiency (PCE) of 14.2% with an outstanding FF of 0.76 was recorded for inverted devices. These results demonstrate the great potential of the DTBDT-EF unit for future organic photovoltaic applications

    Compact Roll-to-Roll Coater for in Situ X‑ray Diffraction Characterization of Organic Electronics Printing

    No full text
    We describe a compact roll-to-roll (R2R) coater that is capable of tracking the crystallization process of semiconducting polymers during solution printing using X-ray scattering at synchrotron beamlines. An improved understanding of the morphology evolution during the solution-processing of organic semiconductor materials during R2R coating processes is necessary to bridge the gap between “lab” and “fab”. The instrument consists of a vacuum chuck to hold the flexible plastic substrate uniformly flat for grazing incidence X-ray scattering. The time resolution of the drying process that is achievable can be tuned by controlling two independent motor speeds, namely, the speed of the moving flexible substrate and the speed of the printer head moving in the opposite direction. With this novel design, we are able to achieve a wide range of drying time resolutions, from tens of milliseconds to seconds. This allows examination of the crystallization process over either fast or slow drying processes depending on coating conditions. Using regioregular poly­(3-hexylthiophene-2,5-diyl) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) inks based on two different solvents as a model system, we demonstrate the capability of our in situ R2R printing tool by observing two distinct crystallization processes for inks drying from the solvents with different boiling points (evaporation rates). We also observed delayed on-set point for the crystallization of P3HT polymer in the 1:1 P3HT/PCBM BHJ blend, and the inhibited crystallization of the P3HT during the late stage of the drying process

    Quadruple H‑Bonding Cross-Linked Supramolecular Polymeric Materials as Substrates for Stretchable, Antitearing, and Self-Healable Thin Film Electrodes

    No full text
    Herein, we report a de novo chemical design of supramolecular polymer materials (SPMs-<b>1</b>–<b>3</b>) by condensation polymerization, consisting of (i) soft polymeric chains (polytetramethylene glycol and tetraethylene glycol) and (ii) strong and reversible quadruple H-bonding cross-linkers (from 0 to 30 mol %). The former contributes to the formation of the soft domain of the SPMs, and the latter furnishes the SPMs with desirable mechanical properties, thereby producing soft, stretchable, yet tough elastomers. The resulting SPM-<b>2</b> was observed to be highly stretchable (up to 17 000% strain), tough (fracture energy ∼30 000 J/m<sup>2</sup>), and self-healing, which are highly desirable properties and are superior to previously reported elastomers and tough hydrogels. Furthermore, a gold, thin film electrode deposited on this SPM substrate retains its conductivity and combines high stretchability (∼400%), fracture/notch insensitivity, self-healing, and good interfacial adhesion with the gold film. Again, these properties are all highly complementary to commonly used polydimethylsiloxane-based thin film metal electrodes. Last, we proceed to demonstrate the practical utility of our fabricated electrode via both in vivo and in vitro measurements of electromyography signals. This fundamental understanding obtained from the investigation of these SPMs will facilitate the progress of intelligent soft materials and flexible electronics

    Quadruple H‑Bonding Cross-Linked Supramolecular Polymeric Materials as Substrates for Stretchable, Antitearing, and Self-Healable Thin Film Electrodes

    No full text
    Herein, we report a de novo chemical design of supramolecular polymer materials (SPMs-<b>1</b>–<b>3</b>) by condensation polymerization, consisting of (i) soft polymeric chains (polytetramethylene glycol and tetraethylene glycol) and (ii) strong and reversible quadruple H-bonding cross-linkers (from 0 to 30 mol %). The former contributes to the formation of the soft domain of the SPMs, and the latter furnishes the SPMs with desirable mechanical properties, thereby producing soft, stretchable, yet tough elastomers. The resulting SPM-<b>2</b> was observed to be highly stretchable (up to 17 000% strain), tough (fracture energy ∼30 000 J/m<sup>2</sup>), and self-healing, which are highly desirable properties and are superior to previously reported elastomers and tough hydrogels. Furthermore, a gold, thin film electrode deposited on this SPM substrate retains its conductivity and combines high stretchability (∼400%), fracture/notch insensitivity, self-healing, and good interfacial adhesion with the gold film. Again, these properties are all highly complementary to commonly used polydimethylsiloxane-based thin film metal electrodes. Last, we proceed to demonstrate the practical utility of our fabricated electrode via both in vivo and in vitro measurements of electromyography signals. This fundamental understanding obtained from the investigation of these SPMs will facilitate the progress of intelligent soft materials and flexible electronics

    Quadruple H‑Bonding Cross-Linked Supramolecular Polymeric Materials as Substrates for Stretchable, Antitearing, and Self-Healable Thin Film Electrodes

    No full text
    Herein, we report a de novo chemical design of supramolecular polymer materials (SPMs-<b>1</b>–<b>3</b>) by condensation polymerization, consisting of (i) soft polymeric chains (polytetramethylene glycol and tetraethylene glycol) and (ii) strong and reversible quadruple H-bonding cross-linkers (from 0 to 30 mol %). The former contributes to the formation of the soft domain of the SPMs, and the latter furnishes the SPMs with desirable mechanical properties, thereby producing soft, stretchable, yet tough elastomers. The resulting SPM-<b>2</b> was observed to be highly stretchable (up to 17 000% strain), tough (fracture energy ∼30 000 J/m<sup>2</sup>), and self-healing, which are highly desirable properties and are superior to previously reported elastomers and tough hydrogels. Furthermore, a gold, thin film electrode deposited on this SPM substrate retains its conductivity and combines high stretchability (∼400%), fracture/notch insensitivity, self-healing, and good interfacial adhesion with the gold film. Again, these properties are all highly complementary to commonly used polydimethylsiloxane-based thin film metal electrodes. Last, we proceed to demonstrate the practical utility of our fabricated electrode via both in vivo and in vitro measurements of electromyography signals. This fundamental understanding obtained from the investigation of these SPMs will facilitate the progress of intelligent soft materials and flexible electronics
    corecore