52 research outputs found

    A web-based collaborative decision making system for construction project teams using fuzzy logic

    Get PDF
    In the construction industry, the adoption of concurrent engineering principles requires the development of effective enabling IT tools. Such tools need to address specific areas of need in the implementation of concurrent engineering in construction. Collaborative decision-making is an important area in this regard. A review of existing works has shown that none of the existing approaches to collaborative decision-making adequately addresses the needs of distributed construction project teams. The review also reveals that fuzzy logic offers great potential for application to collaborative decision-making. This thesis describes a Web-based collaborative decision-making system for construction project teams using fuzzy logic. Fuzzy logic is applied to tackle uncertainties and imprecision during the decision-making process. The prototype system is designed as Web-based to cope with the difficulty in the case where project team members are geographically distributed and physical meetings are inconvenient/or expensive. The prototype was developed into a Web-based software using Java and allows a virtual meeting to be held within a construction project team via a client-server system. The prototype system also supports objectivity in group decision-making and the approach encapsulated in the prototype system can be used for generic decision-making scenarios. The system implementation revealed that collaborative decision-making within a virtual construction project team can be significantly enhanced by the use of a fuzzybased approach. A generic scenario and a construction scenario were used to evaluate the system and the evaluation confirmed that the system does proffer many benefits in facilitating collaborative decision-making in construction. It is concluded that the prototype decision-making system represents a unique and innovative approach to collaborative decision-making in construction project teams. It not only contributes to the implementation of concurrent engineering in construction, but also it represents a substantial advance over existing approaches

    Correlation between Molecular Structure and Interfacial Properties of Edge or Basal Plane Modified Graphene Oxide

    No full text
    Although graphene oxide (GO) has been reported to be able to be edge functionalized or basal-plane functionalized separately, no research has been done on comparing both the molecular structure and interfacial properties of them. In this study, an alkyl amine was grafted to the epoxy group on the basal planes of GO (b-GO) and carboxyl group at the edges of GO (e-GO) separately by using different synthetic approach. With the combination of various molecular structure and morphology characterization methodologies, we proved that the reaction site for e-GO was only with the carboxyl group at the edge of GO and that for b-GO was epoxy group on the basal plane of GO, indicating that GO could be controllably functionalized (fGOs), and the structure of fGOs could be tuned. Study of the interfacial behavior of fGOs at liquid–liquid interface showed that the interfacial tension reducing capability of e-GO was broader than that of b-GO, and for alkyl oil phase, b-GO was slightly better than e-GO, and both were better than traditional nonionic surfactant. Study of the interfacial behavior of fGOs at liquid–solid interface demonstrated that, after absorption, b-GO arranged vertically on the metal surface, forming dense, compact, and strong film, while e-GO aligned horizontally to form loosely assembled film, resulting in higher interfacial shear strength than that of b-GO. Our results indicate the possibilities for tuning the interfacial properties of GO at both liquid–liquid and liquid–solid interfaces, which may be promising in the potential applications in controlled drug delivery, surface protection, absorption and separation, lubrication, nanocomposite, and catalyst fields

    Isolation of a new carboline alkaloid from <i>Trigonostemon lii</i>

    No full text
    <div><p>A new carboline alkaloid, 1-(7-methoxy-quinolinyl-4′-yl)-3,4-dihydro-β-carboline (<b>1</b>), was isolated from the leaves and twigs of <i>Trigonostemon lii</i> Y.T. Chang, together with three known ones, trigonostemonines C and D (<b>2</b> and <b>3</b>), and trigonoliimine A (<b>4</b>). Their structures were elucidated by spectroscopic analyses, including 2D-NMR techniques.</p></div

    Discovery of urine biomarkers for bladder cancer via global metabolomics

    No full text
    <p>Bladder cancer (BC) is latent in its early stage and lethal in its late stage. Therefore, early diagnosis and intervention are essential for successful BC treatment. Considering the limitations of current diagnostic tools, noninvasive biomarkers that are both highly sensitive and specific are needed to improve the overall survival and quality of life of patients. With the advent of systems biology, “-omics” technologies have been developed over the past few decades. As a promising member, global metabolomics has increasingly been found to have clear potential for biomarker discovery. However, urinary metabolomics studies related to BC have lagged behind those of other urinary cancers, and major findings have not been systematically reported. The objective of this review is to comprehensively list the currently identified potential urinary metabolite biomarkers for BC.</p

    Argon Direct Analysis in Real Time Mass Spectrometry in Conjunction with Makeup Solvents: A Method for Analysis of Labile Compounds

    No full text
    Helium direct analysis in real time (He-DART) mass spectrometry (MS) analysis of labile compounds usually tends to be challenging because of the occurrence of prominent fragmentation, which obscures the assigning of an ion to an independent species or merely a fragment in a mixture. In the present work, argon DART (Ar-DART) MS in conjunction with makeup solvents has been demonstrated to analyze a variety of labile compounds including nucleosides, alkaloids, glucose, and other small molecules. The results presented here confirm that Ar-DART can generate significantly less energetic ions than conventional He-DART and is able to produce the intact molecular ions with little or no fragmentation in both positive and negative ion modes. Adding a makeup solvent (absolute ethyl alcohol, methanol, fluorobenzene, or acetone) to the argon gas stream at the exit of the DART ion source can result in 1–2 orders of magnitude increase in detection signals. The sensitivity attainable by Ar-DART was found to be comparable to that by He-DART. The investigation of influence of solvents improves our understanding of the fundamental desorption and ionization processes in DART. The practical application of this rapid and high throughput method is demonstrated by the successful analysis of a natural product (Crude Kusnezoff Monkshood) extract, demonstrating the great potential in mixture research

    Headspace Microextraction of Sulfonamides from Honey by Hollow Fibers Coupled with Ultrasonic Nebulization

    No full text
    A new method for the rapid simultaneous determination of five sulfonamides in honey was developed using ultrasonic nebulization-assisted extraction coupled with hollow fiber liquid–liquid–liquid microextraction prior to liquid chromatography. In the present method, the sample solution was nebulized by ultrasonication. Sulfonamides in the aerosol particles were extracted by 1-octanol impregnated in the pores of a hollow fiber and further into the acceptor phase (acid solution, pH 2.0) contained in the lumen of the hollow fiber. Several experimental parameters that affect the extraction efficiency were optimized. The present method provides good recoveries (88.9–114.2%) and acceptable precision (<10.7%), indicating the effective extraction. The detection limits were 4.6–6.8 μg/kg, lower than the maximum residue limits of sulfonamides in honeys. Compared to the traditional extraction methods, the present method requires less organic solvent and operation time, demonstrating excellent cleanup ability and good enrichment efficiency

    Sudoku-like Lab-on-Paper Cyto-Device with Dual Enhancement of Electrochemiluminescence Intermediates Strategy

    No full text
    This paper describes the design and construction of a sudoku-like lab-on-paper platform, in which dual enhancement of reaction intermediates strategy was incorporated for multiplexed competitive electrochemiluminescence (ECL) cyto-assay. Benefiting from the sudoku-like structure, integrated multifunctions were obtained on such an elaborately devised platform, including specific reagents storage, multiple samples immobilization, residual automatic washing, and signal collection. By utilizing semicarbazide (SE) and silver nanoparticles (AgNPs) as dual enhancers, more ECL intermediates could be obtained in the graphene quantum dots (GQDs) and peroxydisulfate system, resulting in the production of more excited-state GQDs to emit light. Moreover, the double-stranded DNA nanowire with multiple branched arms (MBdsDNA) was chosen as an efficient nanocarrier to load more GQDs and AgNPs. Via immobilizing AgNPs on the end of the plentiful branched arms, Ag–MBdsDNA were obtained and trapped on the sensing interface through the valid competitive interactions between target cells and Ag–MBdsDNA. Afterward, abundant GQDs were attached to the three-dimensional (3D) DNA skeleton of the captured Ag–MBdsDNA via π–π stacking. Due to their good self-catalytic activity of labeled AgNPs, more silver was deposited on the Ag–MBdsDNA@GQDs, giving rise to further amplification of expected signal. With four types of cancer cells as models, MCF-7, CCRF-CEM, HeLa, and K562 cells were assayed in the ranges of 1.0 × 10<sup>2</sup>–1.0 × 10<sup>7</sup>, 1.5 × 10<sup>2</sup>–2.0 × 10<sup>7</sup>, 2.0 × 10<sup>2</sup>–5.0 × 10<sup>6</sup>, and 1.2 × 10<sup>2</sup>–2.0 × 10<sup>6</sup> cells mL<sup>–1</sup> with the detection limits of 38, 53, 67, and 42 cells mL<sup>–1</sup>, respectively. Notably, this strategy supplies a simple and versatile platform for sensitive determination of multiple targeted cells, which would play a crucial role in point-of-care diagnostic fields

    Stackable Lab-on-Paper Device with All-in-One Au Electrode for High-Efficiency Photoelectrochemical Cyto-Sensing

    No full text
    Highly conductive, robust, and multifunctional integrated paper-supported electrodes are requisite to fulfill the promise of paper-based analytical application. Herein, an all-in-one Au electrode comprising of detection zone, waterproof electronic bridge, and signal output contactor was engineered via combining the double-sided growth method with the secondary wax-printing. Benefiting from the strongly omnidirectional conductivity and desirably mechanical robustness of the as-prepared electrode, a stackable lab-on-paper cyto-device integrated with high-efficiency photoelectrochemical strategy was developed for the MCF-7 cells assay. Specifically, the detection zone of the electrode, serving as the signal generator, was functionalized with a low-toxic cosensitized structure composed of corn-like ZnO nanorods, graphene quantum dots (GQDs), and Ag<sub>2</sub>Se QDs. With the proximity control of DNA hairpin-based aptamer probe (DHAP), a strong photocurrent could be promoted by the activated cosensitization effect and collected on the signal output contactor via the electron transport of waterproof electronic bridge. Upon the MCF-7 cells recognition, the DHAP switched from closed to open state with the formation of DNA-cell bioconjugates and the spatial separation of Ag<sub>2</sub>Se QDs linked on the terminal of DHAP from the electrode surface. The photocurrent was noticeably decreased due to the double inhibition of steric hindrance effect and vanished cosensitization effect. Based on the target-triggered photocurrent attenuation, the sensitive detection of target cells was achieved. This work not only provided a unique method for paper-based electrode preparation but also offered a powerful platform for the highly sensitive photoelectrochemical bioanalysis
    • …
    corecore