2 research outputs found

    Scallop-Inspired DNA Nanomachine: A Ratiometric Nanothermometer for Intracellular Temperature Sensing

    No full text
    Accurate measurement of intracellular temperature is of great significance in biology and medicine. With use of DNA nanotechnology and inspiration by nature’s examples of “protective and reversible responses” exoskeletons, a scallop-inspired DNA nanomachine (SDN) is desgined as a ratiometric nanothermometer for intracellular temperature sensing. The SDN is composed of a rigid DNA tetrahedron, where a thermal-sensitive molecular beacon (MB) is embedded in one edge of the DNA tetrahedron. Relying on the thermal-sensitive MB and fluorescence resonance energy transfer (FRET) signaling mechanism, the “On” to “Off” signal is reversibly responding to “below” and “over” the melting temperature. Mimicking the functional anatomy of a scallop, the SDN exhibits high cellular permeability and resistance to enzymatic degradation, good reversibility, and tunable response range. Furthermore, FRET ratiometric signal that allows the simultaneous recording of two emission intensities at different wavelengths can provide a feasible approach for precise detection, minimizing the effect of system fluctuations

    Detection of Nucleic Acids in Complex Samples via Magnetic Microbead-Assisted Catalyzed Hairpin Assembly and “DD–A” FRET

    No full text
    Nucleic acids, as one kind of significant biomarker, have attracted tremendous attention and exhibited immense values in fundamental studies and clinical applications. In this work, we developed a fluorescent assay for detecting nucleic acids in complex samples based on magnetic microbead (MMB)-assisted catalyzed hairpin assembly (CHA) and a donor donor–acceptor fluorescence resonance energy transfer (“DD–A” FRET) signaling mechanism. Three types of DNA hairpin probes were employed in this system, including Capture, H1 (double FAM-labeled probe as FRET donor), and H2 (TAMRA-labeled probe as FRET acceptor). First, the Captures immobilized on MMBs bound to targets in complex samples, and the sequences in Captures that could trigger catalyzed hairpin assembly (CHA) were exposed. Then, target-enriched MMB complexes were separated and resuspended in the reaction buffer containing H1 and H2. As a result, numerous H1–H2 duplexes were formed during the CHA process, inducing an obvious FRET signal. In contrast, CHA could not be triggered, and the FRET signal was weak, while target was absent. With the aid of magnetic separation and “DD–A” FRET, errors from background interference were effectively eliminated. Importantly, this strategy realized amplified detection in buffer, with detection limits of microRNA as low as 34 pM. Furthermore, this method was successfully applied to detect microRNA-21 in serum and cell culture media. The results showed that our method has the potential for biomedical research and clinical application
    corecore