4 research outputs found

    Effect of functional composite coating developed via sulphate and chloride process parameter on the UNS G10150 steel for structural and wear mitigation in defence application

    Get PDF
    The major engineering challenge of materials in defence technologies is the vulnerability of based metals to structural and wears deformation in service. In this paper, structural formation, mechanical and thermal stability behavior of developed composite coating of Zn-30Al-7%Ti/Sn chloride bath and Zn- 30Al-7%Ti/Sn sulphate bath was investigated and compared to provide mitigation against failure. The thermal ageing property was done for 2 h at 600 �C via isothermal furnace. The structural, interfacial effect and stability behaviors of the co-deposited alloys were evaluated using scanning electron microscope equipped with energy dispersive spectrometer (SEM/EDS), atomic force microscope (AFM) and Xray diffractometer (XRD). The hardness and wear properties of the deposited coatings were examined with diamond base micro-hardness tester and reciprocating sliding tester respectively. The result shows that Zn-30Al-7%Ti/Sn sulphate co-deposition contributed to increase hardness and wear resistance than Zn-30Al-7%Ti/Sn chloride bath alloy. The stable crystal growth and significant performance of Zn-30Al- 7%Ti/Sn sulphate are link to the intermetallic phase hybrid of ZnAl, Zn4TiAl2, Zn3AlTi. Besides, it was observed that Zn-30Al-7%Ti/Sn sulphate has excellent thermomechanical stability at harsh temperature, due to the deposition of Sn/Ti on steel; leading to formation of super-hard interface. However, it was established that co-deposition of mild steel with Zn-30Al-7%Ti/Sn in sulphate bath significantly improved the structural and wear performance. It was shown that the hardness and wear of the developed composite Zn-30Al-7%Ti/Sn is increased by about 80% compared to as received sample and about 25% compared with Zn-30Al-7%Ti/Sn chloride coating developed. The improvement was proved to be an interference of zinc-composite growth. Thus, this work shows that sulphate induced Zn-30Al-7%Ti/ Sn via generation of controllable process parameter can provide significant improvements in thin filmcoating for wear mitigation and structural improvement in defence application

    Investigation of microstructural and physical characteristics of nano composite tin oxide-doped Al3+ in Zn2+ based composite coating by DAECD technique

    Get PDF
    In other to overcome the devastating deterioration of mild steel in service, Zn-based embedded Al/SnO2 composite coatings have been considered as reinforcing alternative replacements to the more traditional deposition for improved surface properties by using Dual Anode Electrolytic Co-deposition (DAECD) technique from chloride bath. The structural characterization of the starting materials and deposited coating are evaluated using scanning electron microscopy (SEM), equipped with energy dispersive X-ray spectroscopy (EDX) elemental analysis and atomic force microscope (AFM). The hardness behaviour, wear and intermetallic distribution was examined by diamond based microhardness tester, CETR reciprocating sliding test rig and X-ray diffractometer (XRD) respectively. The corrosion properties of the developed coating were examined in 3.5% NaCl. The microstructure of the deposited sample obtained at 7% SnO2, revealed fine-grains deposit of the Al/SnO2 on the mild steel surface. The results showed that the Al/SnO2 strengthening alloy plays a significant role in impelling the wear and corrosion behaviour of Zn-Al/SnO2 coatings in an aggressive saline environment. Interestingly Zn-30Al-7Sn-chloride showed the highest wear and improved corrosion resistance due to Al/SnO2 oxide passive film that forms during anodic polarization. This work established that co-deposition of mild steel with Al/SnO2 is auspicious in increasing the anti-wear and corrosion progression. Keywords: Microstructure, Wear, Composite, Microhardness, Deposi
    corecore