218 research outputs found

    Reconfigurable Intelligent Surfaces for Wireless Communications: Principles, Challenges, and Opportunities

    Full text link
    Recently there has been a flurry of research on the use of reconfigurable intelligent surfaces (RIS) in wireless networks to create smart radio environments. In a smart radio environment, surfaces are capable of manipulating the propagation of incident electromagnetic waves in a programmable manner to actively alter the channel realization, which turns the wireless channel into a controllable system block that can be optimized to improve overall system performance. In this article, we provide a tutorial overview of reconfigurable intelligent surfaces (RIS) for wireless communications. We describe the working principles of reconfigurable intelligent surfaces (RIS) and elaborate on different candidate implementations using metasurfaces and reflectarrays. We discuss the channel models suitable for both implementations and examine the feasibility of obtaining accurate channel estimates. Furthermore, we discuss the aspects that differentiate RIS optimization from precoding for traditional MIMO arrays highlighting both the arising challenges and the potential opportunities associated with this emerging technology. Finally, we present numerical results to illustrate the power of an RIS in shaping the key properties of a MIMO channel.Comment: to appear in the IEEE Transactions on Cognitive Communications and Networking (TCCN

    UER: A Heuristic Bias Addressing Approach for Online Continual Learning

    Full text link
    Online continual learning aims to continuously train neural networks from a continuous data stream with a single pass-through data. As the most effective approach, the rehearsal-based methods replay part of previous data. Commonly used predictors in existing methods tend to generate biased dot-product logits that prefer to the classes of current data, which is known as a bias issue and a phenomenon of forgetting. Many approaches have been proposed to overcome the forgetting problem by correcting the bias; however, they still need to be improved in online fashion. In this paper, we try to address the bias issue by a more straightforward and more efficient method. By decomposing the dot-product logits into an angle factor and a norm factor, we empirically find that the bias problem mainly occurs in the angle factor, which can be used to learn novel knowledge as cosine logits. On the contrary, the norm factor abandoned by existing methods helps remember historical knowledge. Based on this observation, we intuitively propose to leverage the norm factor to balance the new and old knowledge for addressing the bias. To this end, we develop a heuristic approach called unbias experience replay (UER). UER learns current samples only by the angle factor and further replays previous samples by both the norm and angle factors. Extensive experiments on three datasets show that UER achieves superior performance over various state-of-the-art methods. The code is in https://github.com/FelixHuiweiLin/UER.Comment: 9 pages, 12 figures, ACM MM202

    On Spatial Multiplexing Using Reconfigurable Intelligent Surfaces

    Full text link
    We consider an uplink multi-user scenario and investigate the use of reconfigurable intelligent surfaces (RIS) to optimize spatial multiplexing performance when a linear receiver is used. We study two different formulations of the problem, namely maximizing the effective rank and maximizing the minimum singular value of the RIS-augmented channel. We employ gradient-based optimization to solve the two problems and compare the solutions in terms of the sum-rate achievable when a linear receiver is used. Our results show that the proposed criteria can be used to optimize the RIS to obtain effective channels with favorable properties and drastically improve performance even when the propagation through the RIS contributes a small fraction of the received power.Comment: 5 pages, 4 figures, accepted for publication in IEEE Wireless Communications Letter

    The cosmic ray test of MRPCs for the BESIII ETOF upgrade

    Full text link
    In order to improve the particle identification capability of the Beijing Spectrometer III (BESIII),t is proposed to upgrade the current endcap time-of-flight (ETOF) detector with multi-gap resistive plate chamber (MRPC) technology. Aiming at extending ETOF overall time resolution better than 100ps, the whole system including MRPC detectors, new-designed Front End Electronics (FEE), CLOCK module, fast control boards and time to digital modules (TDIG), was built up and operated online 3 months under the cosmic ray. The main purposes of cosmic ray test are checking the detectors' construction quality, testing the joint operation of all instruments and guaranteeing the performance of the system. The results imply MRPC time resolution better than 100psps, efficiency is about 98%\% and the noise rate of strip is lower than 1Hz/Hz/(scm2scm^{2}) at normal threshold range, the details are discussed and analyzed specifically in this paper. The test indicates that the whole ETOF system would work well and satisfy the requirements of upgrade

    Metabolic dysfunction-associated fatty liver disease increased the risk of subclinical carotid atherosclerosis in China

    Get PDF
    Background and aimsMetabolic dysfunction-associated fatty liver disease (MAFLD) was proposed to substitute NAFLD in 2020. This new term highlights the systematic metabolic disturbances that accompany fatty liver. We evaluated the correlations between MAFLD and subclinical carotid atherosclerosis (SCA) based on a nationwide health examination population in China.MethodsWe performed a nationwide cross-sectional population and a Beijing retrospective cohort from 2009 to 2017. SCA was defined as elevated carotid intima-media thickness. The multivariable logistic and Cox models were used to analyze the association between MAFLD and SCA.Results153,482 participants were included in the cross-sectional study. MAFLD was significantly associated with SCA in fully adjusted models, with an odds ratio of 1.66; 95% confidence interval (CI): 1.62-1.70. This association was consistent in the cohort, with a hazard ratio (HR) of 1.31. The association between baseline MAFLD and incident SCA increased with hepatic steatosis severity. Subgroup analysis showed an interaction between age and MAFLD, with a higher risk in younger groups (HR:1.67, 95% CI: 1.17-2.40).ConclusionIn this large cross-section and cohort study, MAFLD was significantly associated with the presence and development of SCA. Further, the risk was higher among MAFLD individuals with high hepatic steatosis index and young adults

    Complete Genome Sequence and Characterization of a Protein-Glutaminase Producing Strain, Chryseobacterium proteolyticum QSH1265

    Get PDF
    Recently, an enzyme named protein-glutaminase (PG) has been identified as a new type of enzyme with significant potential for deamidation of food proteins. The enzyme is shown to be expressed as a pre-pro-protein with a putative signal peptide of 21 amino acids, a pro-sequence of 114 amino acids, and a mature PG of 185 amino acids. The microbial enzyme PG specifically catalyzes deamidation of proteins without protein hydrolysis pretreatment and only reacts with glutamine residues in the side-chains of proteins or long peptides. All these attributes suggest that it has a great potential for food industrial applications. However, until recently, there have been relatively few studies of the PG-producing strains. A strain named Chryseobacterium proteolyticum QSH1265 which can produce PG was isolated from a soil sample collected in Songjiang, Shanghai, China. Its enzyme activity was about 0.34 ± 0.01 U/mL when using carboxybenzoxy-Gln-Gly as a substrate. The strain can produce acid from D-glucose, maltose, L-arabinose sucrose, glycerol, and mannitol but not fructose, and it is also positive for indole production and urease. Here we describe the complete genome sequence of this strain via PacBio RSII sequencing. The C. proteolyticum QSH1265 genome consists of a circular chromosome with total length of 4,849,803 bp without any plasmids. All of 4563 genes were predicted including 4459 genes for protein-coding and 104 RNA-relative genes with an average G+C content of 36.16%. The KEGG and COG annotation provide information for the specific function of proteins encoded in the genome, such as proteases, chromoproteins, stress proteins, antiporters, etc. A highly conserved hypothetical protein shares a promoter with the gene encoding the protein-glutaminase enzyme. The genome sequence and preliminary annotation provide valuable genetic information for further study of C. proteolyticum

    Concept for a Future Super Proton-Proton Collider

    Full text link
    Following the discovery of the Higgs boson at LHC, new large colliders are being studied by the international high-energy community to explore Higgs physics in detail and new physics beyond the Standard Model. In China, a two-stage circular collider project CEPC-SPPC is proposed, with the first stage CEPC (Circular Electron Positron Collier, a so-called Higgs factory) focused on Higgs physics, and the second stage SPPC (Super Proton-Proton Collider) focused on new physics beyond the Standard Model. This paper discusses this second stage.Comment: 34 pages, 8 figures, 5 table
    corecore