5 research outputs found

    Tuning Solvated Electrons by Polar–Nonpolar Oxide Heterostructure

    No full text
    Solvated electron states at the oxide/aqueous interface represent the lowest energy charge-transfer pathways, thereby playing an important role in photocatalysis and electronic device applications. However, their energies are usually higher than the conduction band minimum (CBM), which makes the solvated electrons difficult to utilize in charge-transfer processes. Thus it is essential to stabilize the energy of the solvated electron states. Taking LaAlO<sub>3</sub>/SrTiO<sub>3</sub> (LAO/STO) oxide heterostructure with H<sub>2</sub>O-adsorbed monolayer as a prototypical system, we show using DFT and ab initio time-dependent nonadiabatic molecular dynamics simulation that the energy and dynamics of solvated electrons can be tuned by the electric field in the polar–nonpolar oxide heterostructure. In particular, for LAO/STO with p-type interface, the CBM is contributed by the solvated electron state when LAO is thicker than four unit cells. Furthermore, the solvated electron band minimum can be partially occupied when LAO is thicker than eight unit cells. We propose that the tunability of solvated electron states can be achieved on polar–nonpolar oxide heterostructure surfaces as well as on ferroelectric oxides, which is important for charge and proton transfer at oxide/aqueous interfaces

    Table_2.DOCX

    No full text
    <p>Tuberculosis (TB) is one of the oldest infectious diseases that affected humankind and remains one of the world’s deadliest communicable diseases that could be considered as global emergency, but the discovery and development of isoniazid (INH) in the 1950s paved the way to an effective single and/or combined first-line anti-TB therapy. However, administration of INH induces severe hepatic toxicity in some patients. Previously, we establish a rat model of INH hepatotoxicity utilizing the inflammatory stress theory, in which bacterial lipopolysaccharide (LPS) potentially enhanced INH toxicity. These enhancing activities ranged between augmenting the inflammatory stress, oxidative stress, alteration of bile acid homeostasis, and CYP2E1 over-expression. Although pre-treatment with dexamethasone (DEX) helped overcome both inflammatory and oxidative stress which ended-up in alleviation of LPS augmenting effects, but still minor toxicities were being detected, alongside with CYP2E1 over expression. This finding positively indicated the corner-stone role played by CYP2E1 in the pathogenesis of INH/LPS-induced liver damage. Therefore, we examined whether INH/LPS co-treatment with CYP2E1 inhibitor diallyl sulfide (DAS) and DEX can protect against the INH/LPS-induced hepatotoxicity. Our results showed that pre-administration of both DAS and DEX caused significant reduction in serum TBA, TBil, and gamma-glutamyl transferase levels. Furthermore, the histopathological analysis showed that DAS and DEX could effectively reverse the liver lesions seen following INH/LPS treatment and protect against hepatic steatosis as indicated by absence of lipid accumulation. Pre-treatment with DAS alone could not completely block the CYP2E1 protein expression following INH/LPS treatment, as appeared in the immunoblotting and immunohistochemistry results. This is probably due to the fact that the combined enhancement activities of both INH and LPS on CYP2E1 protein expression levels might resist the blocking probabilities of DAS. In the meantime, addition of DEX to the DAS/INH/LPS combination caused a significant reduction in CYP2E1 protein expression as revealed by the immunoblotting and fading coloration in immunohistochemistry results. Thus, addition of DEX and DAS together caused strong protection against INH/LPS-induced hepatic damage. These findings reveal the potential therapeutic value of combining DAS and DEX with INH in TB management for reducing the potential risk and incidences of hepatotoxicity.</p

    Table_1.DOCX

    No full text
    <p>Tuberculosis (TB) is one of the oldest infectious diseases that affected humankind and remains one of the world’s deadliest communicable diseases that could be considered as global emergency, but the discovery and development of isoniazid (INH) in the 1950s paved the way to an effective single and/or combined first-line anti-TB therapy. However, administration of INH induces severe hepatic toxicity in some patients. Previously, we establish a rat model of INH hepatotoxicity utilizing the inflammatory stress theory, in which bacterial lipopolysaccharide (LPS) potentially enhanced INH toxicity. These enhancing activities ranged between augmenting the inflammatory stress, oxidative stress, alteration of bile acid homeostasis, and CYP2E1 over-expression. Although pre-treatment with dexamethasone (DEX) helped overcome both inflammatory and oxidative stress which ended-up in alleviation of LPS augmenting effects, but still minor toxicities were being detected, alongside with CYP2E1 over expression. This finding positively indicated the corner-stone role played by CYP2E1 in the pathogenesis of INH/LPS-induced liver damage. Therefore, we examined whether INH/LPS co-treatment with CYP2E1 inhibitor diallyl sulfide (DAS) and DEX can protect against the INH/LPS-induced hepatotoxicity. Our results showed that pre-administration of both DAS and DEX caused significant reduction in serum TBA, TBil, and gamma-glutamyl transferase levels. Furthermore, the histopathological analysis showed that DAS and DEX could effectively reverse the liver lesions seen following INH/LPS treatment and protect against hepatic steatosis as indicated by absence of lipid accumulation. Pre-treatment with DAS alone could not completely block the CYP2E1 protein expression following INH/LPS treatment, as appeared in the immunoblotting and immunohistochemistry results. This is probably due to the fact that the combined enhancement activities of both INH and LPS on CYP2E1 protein expression levels might resist the blocking probabilities of DAS. In the meantime, addition of DEX to the DAS/INH/LPS combination caused a significant reduction in CYP2E1 protein expression as revealed by the immunoblotting and fading coloration in immunohistochemistry results. Thus, addition of DEX and DAS together caused strong protection against INH/LPS-induced hepatic damage. These findings reveal the potential therapeutic value of combining DAS and DEX with INH in TB management for reducing the potential risk and incidences of hepatotoxicity.</p

    Superatom Molecular Orbital as an Interfacial Charge Separation State

    No full text
    Hot electron cooling by energy loss to heat through electron–phonon (e–ph) interaction is an important mechanism that can limit the efficiency of solar energy conversion. To avoid such energy loss, sufficient charge separation needs to be realized by extracting hot carriers from the photoconverter before they cool, which requires fast interfacial charge transfer and slow internal hot carrier relaxation. Using ab initio time-dependent nonadiabatic molecular dynamics and taking C<sub>60</sub>/MoS<sub>2</sub> as a prototype system, we show that the superatom molecular orbitals (SAMOs) of fullerenes, which are bound by the central potential of the whole molecule induced by the charge screening, are ideal media for charge separation. The diffuse character of SAMOs results in extremely weak e–ph interaction and therefore acts as a “phonon bottleneck” for hot electron cooling. Furthermore, it also leads to significant hybridization with other atoms at the interface that induces fast charge transfer. The interfacial charge-transfer rate at the C<sub>60</sub>/MoS<sub>2</sub> interface is found to be 2 orders of magnitude faster than the hot electron cooling from <i>s</i>-SAMO in C<sub>60</sub>. This conclusion is generally applicable for different carbon nanostructures that have SAMOs. The proposed SAMO-induced charge separation provides unique and essential insights into the material design and function for solar energy conversion

    Infrared Nanoimaging Reveals the Surface Metallic Plasmons in Topological Insulator

    No full text
    Surface plasmons make a high degree of localization of electromagnetic fields achievable at the vicinity of metal surfaces. Topological insulators (TIs) are a family of materials which are insulating in the bulk but have metallic surfaces caused by the strong spin–orbit coupling. Surface plasmons supported by the surface state on topological insulators have attracted incredible interests from ultraviolet to mid-infrared frequencies. In this work, we experimentally investigate the near-field properties of Bi<sub>2</sub>Te<sub>3</sub> nanosheets using scattering-type scanning near-field optical microscopy (s-SNOM). The s-SNOM tip enables to detect significantly enhanced intensity in its near field at precisely controlled positions with regards to Bi<sub>2</sub>Te<sub>3</sub> structure. With the help of highly position-selective excitation and high-pixel real-space mapping, we discover near-field patterns of bright outside fringes which are associated with its surface-metallic, plasmonic behavior at mid-infrared frequency. Thereby, we experimentally demonstrate that the scattered signal responses and near-field amplitudes of outside fringes can be tailored via mechanical (sheet thickness of Bi<sub>2</sub>Te<sub>3</sub>), electric (electrostatic gating), and optical (incident wavelength) fashions. The discovery of outside fringes in TI nanosheets may enable the development of strongly enhanced light–matter interactions for quantum optical devices, mid-infrared (MIR) and terahertz detectors or sensors
    corecore