15 research outputs found

    A novel inhibitor of the alternative pathway of complement reverses inflammation and bone destruction in experimental arthritis

    Get PDF
    Complement is an important component of the innate and adaptive immune response, yet complement split products generated through activation of each of the three complement pathways (classical, alternative, and lectin) can cause inflammation and tissue destruction. Previous studies have shown that complement activation through the alternative, but not classical, pathway is required to initiate antibody-induced arthritis in mice, but it is unclear if the alternative pathway (AP) plays a role in established disease. Previously, we have shown that human complement receptor of the immunoglobulin superfamily (CRIg) is a selective inhibitor of the AP of complement. Here, we present the crystal structure of murine CRIg and, using mutants, provide evidence that the structural requirements for inhibition of the AP are conserved in human and mouse. A soluble form of CRIg reversed inflammation and bone loss in two experimental models of arthritis by inhibiting the AP of complement in the joint. Our data indicate that the AP of complement is not only required for disease induction, but also disease progression. The extracellular domain of CRIg thus provides a novel tool to study the effects of inhibiting the AP of complement in established disease and constitutes a promising therapeutic with selectivity for a single complement pathway

    Negative regulation of autoimmune demyelination by the inhibitory receptor CLM-1

    Get PDF
    Multiple sclerosis and its preclinical model, experimental autoimmune encephalomyelitis, are marked by perivascular inflammation and demyelination. Myeloid cells, derived from circulating progenitors, are a prominent component of the inflammatory infiltrate and are believed to directly contribute to demyelination and axonal damage. How the cytotoxic activity of these myeloid cells is regulated is poorly understood. We identify CMRF-35–like molecule-1 (CLM-1) as a negative regulator of autoimmune demyelination. CLM-1 is expressed on inflammatory myeloid cells present in demyelinating areas of the spinal cord after immunization of mice with MOG35-55 (myelin oligodendrocyte glycoprotein) peptide. Absence of CLM-1 resulted in significantly increased nitric oxide and proinflammatory cytokine production, along with increased demyelination and worsened clinical scores, whereas T cell responses in the periphery or in the spinal cord remained unaffected. This study thus identifies CLM-1 as a negative regulator of myeloid effector cells in autoimmune demyelination

    Structure- and machine learning-guided engineering demonstrate that a non-canonical disulfide in an anti-PD-1 rabbit antibody does not impede antibody developability

    No full text
    ABSTRACTRabbits produce robust antibody responses and have unique features in their antibody repertoire that make them an attractive alternative to rodents for in vivo discovery. However, the frequent occurrence of a non-canonical disulfide bond between complementarity-determining region (CDR) H1 (C35a) and CDRH2 (C50) is often seen as a liability for therapeutic antibody development, despite limited reports of its effect on antibody binding, function, and stability. Here, we describe the discovery and humanization of a human-mouse cross-reactive anti-programmed cell death (PD-1) monoclonal rabbit antibody, termed h1340.CC, which possesses this non-canonical disulfide bond. Initial removal of the non-canonical disulfide resulted in a loss of PD-1 affinity and cross-reactivity, which led us to explore protein engineering approaches to recover these. First, guided by the sequence of a related clone and the crystal structure of h1340.CC in complex with PD-1, we generated variant h1340.SA.LV with a potency and cross-reactivity similar to h1340.CC, but only partially recovered affinity. Side-by-side developability assessment of both h1340.CC and h1340.SA.LV indicate that they possess similar, favorable properties. Next, and prompted by recent developments in machine learning (ML)-guided protein engineering, we used an unbiased ML- and structure-guided approach to rapidly and efficiently generate a different variant with recovered affinity. Our case study thus indicates that, while the non-canonical inter-CDR disulfide bond found in rabbit antibodies does not necessarily constitute an obstacle to therapeutic antibody development, combining structure- and ML-guided approaches can provide a fast and efficient way to improve antibody properties and remove potential liabilities
    corecore