26 research outputs found

    A screening identifies harmine as a novel antibacterial compound against Ralstonia solanacearum

    Get PDF
    Ralstonia solanacearum, the causal agent of bacterial wilt, is a devastating plant pathogenic bacterium that infects more than 450 plant species. Until now, there has been no efficient control strategy against bacterial wilt. In this study, we screened a library of 100 plant-derived compounds for their antibacterial activity against R. solanacearum. Twelve compounds, including harmine, harmine hydrochloride, citral, vanillin, and vincamine, suppressed bacterial growth of R. solanacearum in liquid medium with an inhibition rate higher than 50%. Further focus on harmine revealed that the minimum inhibitory concentration of this compound is 120 mg/L. Treatment with 120 mg/L of harmine for 1 and 2 h killed more than 90% of bacteria. Harmine treatment suppressed the expression of the virulence-associated gene xpsR. Harmine also significantly inhibited biofilm formation by R. solanacearum at concentrations ranging from 20 mg/L to 60 mg/L. Furthermore, application of harmine effectively reduced bacterial wilt disease development in both tobacco and tomato plants. Collectively, our results demonstrate the great potential of plant-derived compounds as antibacterial agents against R. solanacearum, providing alternative ways for the efficient control of bacterial wilt

    Multi-omics profiling reveals resource allocation and acclimation strategies to temperature changes in a marine dinoflagellate

    Get PDF
    Temperature is a critical environmental factor that affects the cell growth of dinoflagellates and bloom formation. To date, the molecular mechanisms underlying the physiological responses to temperature variations are poorly understood. Here, we applied quantitative proteomic and untargeted metabolomic approaches to investigate protein and metabolite expression profiles of a bloom-forming dinoflagellate Prorocentrum shikokuense at different temperatures. Of the four temperatures (19, 22, 25, and 28°C) investigated, P. shikokuense at 25°C exhibited the maximal cell growth rate and maximum quantum efficiency of photosystem II (Fv/Fm) value. The levels of particulate organic carbon (POC) and nitrogen (PON) decreased with increasing temperature, while the POC/PON ratio increased and peaked at 25°C. Proteomic analysis showed proteins related to photoreaction, light harvesting, and protein homeostasis were highly expressed at 28°C when cells were under moderate heat stress. Metabolomic analysis further confirmed reallocated amino acids and soluble sugars at this temperature. Both omic analyses showed glutathione metabolism that scavenges the excess reactive oxygen species, and transcription and lipid biosynthesis that compensate for the low translation efficiency and plasma membrane fluidity were largely upregulated at suboptimal temperature. Higher accumulations of glutathione, glutarate semialdehyde, and 5-KETE at 19°C implied their important roles in low-temperature acclimation. The strikingly active nitrate reduction and nitrogen flux into asparagine, glutamine, and aspartic acid at 19°C indicated these three amino acids may serve as nitrogen storage pools and help cells cope with low temperature. Our study provides insights into the effects of temperature on dinoflagellate resource allocation and advances our knowledge of dinoflagellate bloom formation in marine environments

    Surface evolution of AlGaN nanowire decorated by cesium atoms: A first principle study

    No full text
    Surface decoration with cesium on the photocathode is an effective method to reduce surface barriers and promote electron emission. In this study, we investigated the changes in surface properties of AlGaN nanowire coated with Cs atoms using first-principle calculations. The N bridge site is the most stable site for a single atom deposition. As more Cs atoms are deposited on the surface, the average adsorption energy increases along with the weakened ionization of Cs adatoms. The Bader charge of surface Al and Ga atoms undertake significant changes in comparison with tiny alteration of N atoms, especially for Al atom with a decrease of 0.41 |e|/atom. The variation in surface work function reaches a maximum of 2.3 ∼ 2.5 eV at Cs coverage of 0.5 ∼ 0.75 ML, which can be attributed to the synergistic effect of dipole length and charge redistribution. The donor states underneath CBM induced by the orbital overlap of Al-p, Ga-p and Cs-d electrons accompanied by the downward band bending in the band structures. This work provides theoretical insight into the surface evolution of Cs-decorated AlGaN nanowires and offers guidance for the development of state-of-the-art nanostructured vacuum devices

    Single-Cell Co-expression Analysis Reveals Distinct Functional Modules, Co-regulation Mechanisms and Clinical Outcomes.

    No full text
    Co-expression analysis has been employed to predict gene function, identify functional modules, and determine tumor subtypes. Previous co-expression analysis was mainly conducted at bulk tissue level. It is unclear whether co-expression analysis at the single-cell level will provide novel insights into transcriptional regulation. Here we developed a computational approach to compare glioblastoma expression profiles at the single-cell level with those obtained from bulk tumors. We found that the co-expressed genes observed in single cells and bulk tumors have little overlap and show distinct characteristics. The co-expressed genes identified in bulk tumors tend to have similar biological functions, and are enriched for intrachromosomal interactions with synchronized promoter activity. In contrast, single-cell co-expressed genes are enriched for known protein-protein interactions, and are regulated through interchromosomal interactions. Moreover, gene members of some protein complexes are co-expressed only at the bulk level, while those of other complexes are co-expressed at both single-cell and bulk levels. Finally, we identified a set of co-expressed genes that can predict the survival of glioblastoma patients. Our study highlights that comparative analyses of single-cell and bulk gene expression profiles enable us to identify functional modules that are regulated at different levels and hold great translational potential

    Spatial heterogeneity of vegetation phenology caused by urbanization in China based on remote sensing

    Get PDF
    Vegetation phenology changes caused by urbanization could lead to shifts in ecosystem services in urban areas and impact on human health. The characteristics of urbanization affect vegetation phenology need to be emphasized, especially in China with a complex natural environment and rapid urbanization background. In this study, we used remote sensing-based phenological data (MODIS MCD12Q2) to analyze the spatial heterogeneity of vegetation phenology caused by urbanization between urban and non-urban areas in 320 cities across China. We found a significant difference between vegetation phenology in urban and its corresponding non-urban area at national and the regional scale. For national scale, the start of the growing season (SOS) was significantly advanced by 2.53 days (P < 0.001), and the end of the growing season (EOS) was significantly delayed by 6.72 days (P < 0.001), resulting in the growing season length (GSL) was significantly extended by 9.25 days (P < 0.001). For regional scale, the changes of SOS, EOS, and GSL caused by urbanization varied from seven vegetation zones in China. As expected for the Tropical monsoon rain forest and rain forest zone (TR) and Tibetan plateau alpine vegetation zone (TP), and Warm-temperate broadleaf deciduous forest zone (WTB), vegetation phenology in other four vegetation zones shows significant differences between urban and non-urban areas. Furthermore, the potential factors driving phenological changes through urbanization were discussed, which will be of great help in understanding the urban ecological process in future studies

    Members in protein complexes are predominately connected by one type of co-expressions.

    No full text
    <p>(A) The fraction of co-expressed genes whose protein products interact with each other. (B) The same fraction in function of correlation coefficients. (C) Examples of protein complexes. Two gene members in a complex were connected if they are co-expressed. The color denotes the types of co-expressions: single-cell specific (orange), bulk specific (cyan), and shared (green).</p
    corecore