200 research outputs found

    Interplay between Kitaev interaction and single ion anisotropy in ferromagnetic CrI3_3 and CrGeTe3_3 monolayers

    Full text link
    Magnetic anisotropy is crucially important for the stabilization of two-dimensional (2D) magnetism, which is rare in nature but highly desirable in spintronics and for advancing fundamental knowledge. Recent works on CrI3_3 and CrGeTe3_3 monolayers not only led to observations of the long-time-sought 2D ferromagnetism, but also revealed distinct magnetic anisotropy in the two systems, namely Ising behavior for CrI3_3 versus Heisenberg behavior for CrGeTe3_3. Such magnetic difference strongly contrasts with structural and electronic similarities of these two materials, and understanding it at a microscopic scale should be of large benefits. Here, first-principles calculations are performed and analyzed to develop a simple Hamiltonian, to investigate magnetic anisotropy of CrI3_3 and CrGeTe3_3 monolayers. The anisotropic exchange coupling in both systems is surprisingly determined to be of Kitaev-type. Moreover, the interplay between this Kitaev interaction and single ion anisotropy (SIA) is found to naturally explain the different magnetic behaviors of CrI3_3 and CrGeTe3_3. Finally, both the Kitaev interaction and SIA are further found to be induced by spin-orbit coupling of the heavy ligands (I of CrI3_3 or Te of CrGeTe3_3) rather than the commonly believed 3d magnetic Cr ions

    Room Temperature Quantum Spin Hall Insulators with a Buckled Square Lattice

    Full text link
    Two-dimensional (2D) topological insulators (TIs), also known as quantum spin Hall (QSH) insulators, are excellent candidates for coherent spin transport related applications because the edge states of 2D TIs are robust against nonmagnetic impurities since the only available backscattering channel is forbidden. Currently, most known 2D TIs are based on a hexagonal (specifically, honeycomb) lattice. Here, we propose that there exists the quantum spin Hall effect (QSHE) in a buckled square lattice. Through performing global structure optimization, we predict a new three-layer quasi-2D (Q2D) structure which has the lowest energy among all structures with the thickness less than 6.0 {\AA} for the BiF system. It is identified to be a Q2D TI with a large band gap (0.69 eV). The electronic states of the Q2D BiF system near the Fermi level are mainly contributed by the middle Bi square lattice, which are sandwiched by two inert BiF2 layers. This is beneficial since the interaction between a substrate and the Q2D material may not change the topological properties of the system, as we demonstrate in the case of the NaF substrate. Finally, we come up with a new tight-binding model for a two-orbital system with the buckled square lattice to explain the low-energy physics of the Q2D BiF material. Our study not only predicts a QSH insulator for realistic room temperature applications, but also provides a new lattice system for engineering topological states such as quantum anomalous Hall effect.Comment: 17pages, 4 figures Accepted by nano letter

    Evaluating Gilbert Damping in Magnetic Insulators from First Principles

    Full text link
    Magnetic damping has a significant impact on the performance of various magnetic and spintronic devices, making it a long-standing focus of research. The strength of magnetic damping is usually quantified by the Gilbert damping constant in the Landau-Lifshitz-Gilbert equation. Here we propose a first-principles based approach to evaluate the Gilbert damping constant contributed by spin-lattice coupling in magnetic insulators. The approach involves effective Hamiltonian models and spin-lattice dynamics simulations. As a case study, we applied our method to Y3_3Fe5_5O12_{12}, MnFe2_2O4_4 and Cr2_2O3_3. Their damping constants were calculated to be 0.8Γ—10βˆ’40.8\times10^{-4}, 0.2Γ—10βˆ’40.2\times10^{-4}, 2.2Γ—10βˆ’42.2\times 10^{-4}, respectively at a low temperature. The results for Y3_3Fe5_5O12_{12} and Cr2_2O3_3 are in good agreement with experimental measurements, while the discrepancy in MnFe2_2O4_4 can be attributed to the inhomogeneity and small band gap in real samples. The stronger damping observed in Cr2_2O3_3, compared to Y3_3Fe5_5O12_{12}, essentially results from its stronger spin-lattice coupling. In addition, we confirmed a proportional relationship between damping constants and the temperature difference of subsystems, which had been reported in previous studies. These successful applications suggest that our approach serves as a promising candidate for estimating the Gilbert damping constant in magnetic insulators.Comment: 14 pages, 11 figure
    • …
    corecore