196 research outputs found
The Molecular Mechanism Of Alpha-Synuclein Dependent Regulation Of Protein Phosphatase 2A Activity
Background/Aims: Alpha-synuclein (α-Syn) is a neuronal protein that is highly implicated in Parkinson\u27s disease (PD), and protein phosphatase 2A (PP2A) is an important serine/threonine phosphatase that is associated with neurodegenerative diseases, such as PD. α-Syn can directly upregulate PP2A activity, but the underling mechanism remains unclear. Therefore, we investigated the molecular mechanism of α-Syn regulating PP2A activity. Methods: α-Syn and its truncations were expressed in E.coli, and purified by affinity chromatography. PP2A Cα and its mutants were expressed in recombinant baculovirus, and purified by affinity chromatography combined with gel filtration chromatography. The interaction between α-Syn and PP2A Cα was detected by GST pull-down assay. PP2A activity was investigated by the colorimetric assay. Results: The hydrophobic non-amyloid component (NAC) domain of α-Syn interacted with PP2A Cα and upregulated its activity. α-Syn aggregates reduced its ability to upregulate PP2A activity, since the hydrophobic domain of α-Syn was blocked during aggregation. Furthermore, in the hydrophobic center of PP2A Cα, the residue of I123 was responsible for PP2A to interact with α-Syn, and its hydrophilic mutation blocked its interaction with α-Syn as well as its activity upregulation by α-Syn. Conclusions: α-Syn bound to PP2A Cα by the hydrophobic interaction and upregulated its activity. Blocking the hydrophobic domain of α-Syn or hydrophilic mutation on the residue I123 in PP2A Cα all reduced PP2A activity upregulation by α-Syn. Overall, we explored the mechanism of α-Syn regulating PP2A activity, which might offer much insight into the basis underlying PD pathogenesis
LINC00174 Facilitates Cell Proliferation, Cell Migration and Tumor Growth of Osteosarcoma via Regulating the TGF-β/SMAD Signaling Pathway and Upregulating SSH2 Expression
Osteosarcoma (OS), a frequent malignant tumor which mainly occurs in the bone. The roles of long noncoding RNAs (lncRNAs) have been revealed in cancers, including OS. LncRNA long intergenic non-protein coding RNA (LINC00174) has been validated as an oncogene in several cancers. However, the role of LINC00174 in OS has not been explored. In our research, loss-of-function assays were conducted to explore the function of LINC00174 in OS cells. Then, we explored the downstream pathway of LINC00174 in OS cells. Bioinformatics, RNA pull-down and RIP experiments investigated the downstream mechanism of LINC00174 in OS cells. Finally, in vivo assays clarified the effect of LINC00174 on tumorigenesis. We found that LINC00174 was upregulated in OS tissues and cells. LINC00174 knockdown repressed OS cell growth. Mechanistically, LINC00174 knockdown suppressed the TGF-β/SMAD pathway. LINC00174 interacted with miR-378a-3p, and slingshot protein phosphatase 2 (SSH2) 3′UTR was targeted by miR-378a-3p in OS cells. Rescue assays showed that SSH2 upregulation or miR-378a-3p inhibition counteracted the inhibitory effect of LINC00174 depletion in OS cell growth. Additionally, LINC00174 depletion suppressed tumor growth in mice. In conclusion, LINC00174 promotes OS cellular malignancy and tumorigenesis via the miR-378a-3p/SSH2 axis and the TGF-β/SMAD pathway, which might provide a novel insight for OS treatment
Mapping the potential distribution of major tick species in China
Ticks are known as the vectors of various zoonotic diseases such as Lyme borreliosis and tick-borne encephalitis. Though their occurrences are increasingly reported in some parts of China, our understanding of the pattern and determinants of ticks’ potential distribution over the country remain limited. In this study, we took advantage of the recently compiled spatial dataset of distribution and diversity of ticks in China, analyzed the environmental determinants of ten frequently reported tick species and mapped the spatial distribution of these species over the country using the MaxEnt model. We found that presence of urban fabric, cropland, and forest in a place are key determents of tick occurrence, suggesting ticks were likely inhabited close to where people live. Besides, precipitation in the driest month was found to have a relatively high contribution in mapping tick distribution. The model projected that theses ticks could be widely distributed in the Northwest, Central North, Northeast, and South China. Our results added new evidence on the potential distribution of a variety of major tick species in China and pinpointed areas with a high potential risk of tick bites and tick-borne diseases for raising public health awareness and prevention response
Gestational Exposure to Particulate Matter 2.5 (PM2.5) Leads to Spatial Memory Dysfunction and Neurodevelopmental Impairment in Hippocampus of Mice Offspring
Prenatal exposure to air pollutants has long-term impact on growth retardation of nervous system development and is related to central nervous system diseases in children. However, it is not well-characterized whether gestational exposure to air pollutants affects the development of nervous system in offspring. Here, we investigated the effects of gestational exposure to particulate matter 2.5 (PM2.5) on hippocampus development in mice offspring, through neurobehavioral, ultrastructural, biochemical and molecular investigations. We found that spatial memory in mice offspring from PM2.5 high-dosage group was impaired. Next, hippocampal ultrastructure of the mice offspring in puberty exhibited mitochondrial damage related to PM2.5 exposure. Interestingly, EdU-positive cells in the subgranular zone (SGZ) of offspring from PM2.5 high-dosage group decreased, with NeuN+/EdU+cells reduced significantly. Furthermore, the numbers of NeuN+/TUNEL+, GFAP+/TUNEL+, and Iba1+/TUNEL+ double-labeled cells increased with PM2.5 exposure in a dosage-dependent manner. In addition, gestational exposure to PM2.5 resulted in increased levels of both mRNAs and proteins involved in apoptosis, including caspase-3, -8, -9, p53, and c-Fos, and decreased Bcl-2/Bax ratios in the hippocampus of mice offspring. Moreover, gestational exposure to PM2.5 was dosage-dependently associated with the increased secretions of inflammatory proteins, including NF-κB, TNF-α, and IL-1β. Collectively, our results suggest that gestational exposure to PM2.5 leads to spatial memory dysfunction and neurodevelopmental impairment by exerting effects on apoptotic and neuroinflammatory events, as well as the neurogenesis in hippocampus of mice offspring
Impact of old age on resectable colorectal cancer outcomes
Objective This study was performed to identify a reasonable cutoff age for defining older patients with colorectal cancer (CRC) and to examine whether old age was related with increased colorectal cancer-specific death (CSD) and poor colorectal cancer-specific survival (CSS). Methods A total of 76,858 eligible patients from the surveillance, epidemiology, and end results (SEER) database were included in this study. The Cox proportional hazard regression model and the Chow test were used to determine a suitable cutoff age for defining the older group. Furthermore, a propensity score matching analysis was performed to adjust for heterogeneity between groups. A competing risk regression model was used to explore the impact of age on CSD and non-colorectal cancer-specific death (non-CSD). Kaplan–Meier survival curves were plotted to compare CSS between groups. Also, a Cox regression model was used to validate the results. External validation was performed on data from 1998 to 2003 retrieved from the SEER database. Results Based on a cutoff age of 70 years, the examined cohort of patients was classified into a younger group (n = 51,915, <70 years of old) and an older group (n = 24,943, ≥70 years of old). Compared with younger patients, older patients were more likely to have fewer lymph nodes sampled and were less likely to receive chemotherapy and radiotherapy. When adjusted for other covariates, age-dependent differences of 5-year CSD and 5-year non-CSD were significant in the younger and older groups (15.84% and 22.42%, P < 0.001; 5.21% and 14.21%, P < 0.001). Also an age of ≥70 years remained associated with worse CSS comparing with younger group (subdistribution hazard ratio, 1.51 95% confidence interval (CI) [1.45–1.57], P < 0.001). The Cox regression model as a sensitivity analysis had a similar result. External validation also supported an age of 70 years as a suitable cutoff, and this older group was associated with having reduced CSS and increased CSD. Conclusions A total of 70 is a suitable cutoff age to define those considered as having elderly CRC. Elderly CRC was associated with not only increased non-CSD but also with increased CSD. Further research is needed to provide evidence of whether cases of elderly CRC should receive stronger treatment if possible
Recommended from our members
Metagenomic Next-Generation Sequencing in the Diagnosis of HHV-1 Reactivation in a Critically Ill COVID-19 Patient: A Case Report
Background: Secondary infections pose tremendous challenges in Coronavirus disease 2019 (COVID-19) treatment and are associated with higher mortality rates. Clinicians face of the challenge of diagnosing viral infections because of low sensitivity of available laboratory tests.
Case Presentation: A 66-year-old woman initially manifested fever and shortness of breath. She was diagnosed as critically ill with COVID-19 using quantitative reverse transcription PCR (RT-qPCR) and treated with antiviral therapy, ventilator and extracorporeal membrane oxygenation (ECMO). However, after the condition was relatively stabled for a few days, the patient deteriorated with fever, frequent cough, increased airway secretions, and increased exudative lesions in the lower right lung on chest X-rays, showing the possibility of a newly acquired infection, though sputum bacterial and fungal cultures and smears showed negative results. Using metagenomic next-generation sequencing (mNGS), we identified a reactivation of latent human herpes virus type 1 (HHV-1) in the respiratory tract, blood and gastrointestinal tract, resulting in a worsened clinical course in a critically ill COVID-19 patient on ECMO. Anti-HHV-1 therapy guided by these sequencing results effectively decreased HHV-1 levels, and improved the patient\u27s clinical condition. After 49 days on ECMO and 67 days on the ventilator, the 66-year-old patient recovered and was discharged.
Conclusions: This case report demonstrates the potential value of mNGS for evidence-based treatment, and suggests that potential reactivation of latent viruses should be considered in critically ill COVID-19 patients
- …