18 research outputs found

    Distributed Active Noise Control System Based on a Block Diffusion FxLMS Algorithm with Bidirectional Communication

    Full text link
    Recently, distributed active noise control systems based on diffusion adaptation have attracted significant research interest due to their balance between computational complexity and stability compared to conventional centralized and decentralized adaptation schemes. However, the existing diffusion FxLMS algorithm employs node-specific adaptation and neighborhood-wide combination, and assumes that the control filters of neighbor nodes are similar to each other. This assumption is not true in practical applications, and it leads to inferior performance to the centralized controller approach. In contrast, this paper proposes a Block Diffusion FxLMS algorithm with bidirectional communication, which uses neighborhood-wide adaptation and node-specific combination to update the control filters. Simulation results validate that the proposed algorithm converges to the solution of the centralized controller with reduced computational burden

    Overexpression of Maize Glutathione S-Transferase <i>ZmGST26</i> Decreases Drought Resistance of <i>Arabidopsis</i>

    No full text
    Drought stress critically endangers the growth and development of crops. Glutathione S-transferase plays a vital role in response to abiotic stress. However, there are few studies on the role of glutathione S-transferase in maize drought stress. In this study, the significantly downregulated expression of ZmGST26 in roots under drought stress was analyzed by qRT-PCR. Promoter analyses showed that there were several cis-acting elements related to drought stress and that were involved in oxidative response in the promoter region of ZmGST26. Subcellular localization results showed that ZmGST26 was localized in the nucleus. The transgenic lines of the Arabidopsis over-expressing ZmGST26 were more sensitive to drought stress and ABA in seed germination and inhibited ABA-mediated stomatal closure. Under drought stress, phenotypic analyses showed that the germination rate, root length and survival rate of ZmGST26 overexpressing lines were significantly lower than those of wild-type lines. The determination of physiological and biochemical indexes showed that the water loss rate, malondialdehyde, O2− and H2O2 of the overexpression lines significantly increased compared with wild-type Arabidopsis, but the antioxidant enzyme activities (CAT, SOD and POD), and proline and chlorophyll contents were significantly reduced. Subsequently, the qRT-PCR analysis of drought stress-related gene expression showed that, under drought stress conditions, the expression levels of DREB2A, RD29A, RD29B and PP2CA genes in ZmGST26 overexpression lines were significantly lower than those in wild-type Arabidopsis. In summary, ZmGST26 reduced the drought resistance of plants by aggravating the accumulation of reactive oxygen species in Arabidopsis

    Extremely Low-Frequency Electromagnetic Field Impairs the Development of Honeybee (Apis cerana)

    No full text
    Increasing ELF-EMF pollution in the surrounding environment could impair the cognition and learning ability of honeybees, posing a threat to the honeybee population and its pollination ability. In a social honeybee colony, the numbers of adult bees rely on the successful large-scale rearing of larvae and continuous eclosion of new adult bees. However, no studies exist on the influence of ELF-EMFs on honeybee larvae. Therefore, we investigated the survival rate, body weight, and developmental duration of first instar larvae continuously subjected to ELF-EMF exposure. Moreover, the transcriptome of fifth instar larvae were sequenced for analyzing the difference in expressed genes. The results showed that ELF-EMF exposure decreases the survival rate and body weight of both white-eye pupae and newly emerged adults, extends the duration of development time and seriously interferes with the process of metamorphosis and pupation. The transcriptome sequencing showed that ELF-EMF exposure decreases the nutrient and energy metabolism and impedes the degradation of larvae tissues and rebuilding of pupae tissues in the metamorphosis process. The results provide an experimental basis and a new perspective for the protection of honeybee populations from ELF-EMF pollution

    Gradient Structure Design of Flexible Waterborne Polyurethane Conductive Films for Ultraefficient Electromagnetic Shielding with Low Reflection Characteristic

    No full text
    Highly efficient electromagnetic shielding materials entailing strong electromagnetic wave absorption and low reflection have become an increasing requirement for next-generation communication technologies and high-power electronic instruments. In this study, a new strategy is employed to provide flexible waterborne polyurethane composite films with an ultra-efficient electromagnetic shielding effectiveness (EMI SE) and low reflection by constructing gradient shielding layers with a magnetic ferro/ferric oxide deposited on reduced graphene oxide (rGO@Fe<sub>3</sub>O<sub>4</sub>) and silver-coated tetraneedle-like ZnO whisker (T-ZnO/Ag) functional nanoparticles. Because of the differences in density between rGO@Fe<sub>3</sub>O<sub>4</sub> and T-ZnO/Ag, a gradient structure is automatically formed during the film formation process. The gradient distribution of rGO@Fe<sub>3</sub>O<sub>4</sub> over the whole thickness range forms an efficient electromagnetic wave absorption network that endows the film with a strong absorption ability on the top side, while a thin layer of high-density T-ZnO/Ag at the bottom constructs a highly conductive network that provides an excellent electromagnetic reflection ability for the film. This specific structure results in an “absorb–reflect–reabsorb” process when electromagnetic waves penetrate into the composite film, leading to an excellent EMI shielding performance with an extremely low reflection characteristic at a very low nanofiller content (0.8 vol % Fe<sub>3</sub>O<sub>4</sub>@rGO and 5.7 vol % T-ZnO/Ag): the EMI SE reaches 87.2 dB against the X band with a thickness of only 0.5 mm, while the shielding effectiveness of reflection (SE<sub>R</sub>) is only 2.4 dB and the power coefficient of reflectivity (<i>R</i>) is as low as 0.39. This result means that only 39% of the microwaves are reflected in the propagation process when 99.9999998% are attenuated, which is the lowest value among the reported references. This composite film with remarkable performance is suitable for application in portable and wearable smart electronics, and this method offers an effective strategy for absorption-dominated EMI shielding

    Shape-changing electrode array for minimally invasive large-scale intracranial brain activity mapping

    No full text
    Abstract Large-scale brain activity mapping is important for understanding the neural basis of behaviour. Electrocorticograms (ECoGs) have high spatiotemporal resolution, bandwidth, and signal quality. However, the invasiveness and surgical risks of electrode array implantation limit its application scope. We developed an ultrathin, flexible shape-changing electrode array (SCEA) for large-scale ECoG mapping with minimal invasiveness. SCEAs were inserted into cortical surfaces in compressed states through small openings in the skull or dura and fully expanded to cover large cortical areas. MRI and histological studies on rats proved the minimal invasiveness of the implantation process and the high chronic biocompatibility of the SCEAs. High-quality micro-ECoG activities mapped with SCEAs from male rodent brains during seizures and canine brains during the emergence period revealed the spatiotemporal organization of different brain states with resolution and bandwidth that cannot be achieved using existing noninvasive techniques. The biocompatibility and ability to map large-scale physiological and pathological cortical activities with high spatiotemporal resolution, bandwidth, and signal quality in a minimally invasive manner offer SCEAs as a superior tool for applications ranging from fundamental brain research to brain-machine interfaces
    corecore