97 research outputs found

    Autophagy in ischemic stroke: role of circular RNAs

    Get PDF
    Stroke, a central nervous system (CNS) injury, is responsible for the second leading cause of death in the world, bringing a great burden on the world. Stroke is normally divided into ischemic and hemorrhagic stroke, among which ischemic stroke takes up 87% proportion. Accumulating evidence has denoted a rather pivotal role for autophagy in the pathogenesis of ischemic stroke, which is activated in neuronal cells, glial cells, and endothelial cells. Besides, circular RNAs (circRNAs), a novel type of epigenetic regulation, are highly expressed in the CNS and are involved in the process of CNS diseases, which is regarded as an important molecular mechanism in ischemic stroke. Meanwhile, circRNA and autophagy have a significant correlation. The intracellular signaling pathways regulating autophagy can either restrain or activate autophagy. However, under the circumstances of ischemic stroke, the precise communication between circRNA and stroke is largely unknown. This review aims to provide a summary of the relationship between circRNA, autophagy, and ischemic stroke, as well as the current research advancements in understanding how circRNA regulates autophagy in the context of stroke

    Perceptions toward antiretroviral therapy and delayed ART initiation among people living with HIV in Changsha, China: mediating effects of treatment willingness

    Get PDF
    IntroductionDelayed antiretroviral therapy (ART) initiation is associated with poor HIV outcomes and a higher likelihood of HIV transmission.MethodsThis cross-sectional study assessed the proportion of delayed ART initiation which was defined as initiating ART after 30 days of HIV diagnosis, and evaluated the pathways influencing ART initiation among adult PLWH in Changsha, China who were diagnosed between 2014 and 2022.ResultsOf 518 participants, 37.8% delayed in initiating ART. Based on the theory of reasoned action (TRA), delayed initiation was indirectly associated with perceptions toward ART through the mediating pathway of patients’ treatment willingness, with treatment willingness significantly being the full mediator.DiscussionThe findings may guide the development of interventions to improve timely uptake of ART in people who are newly diagnosed with HIV

    Advance on the Application of Magnetic Field-assisted Freezing Technology in Food

    Get PDF
    Freezing is one of the most common and effective method of preserving food. However, the formation of large ice crystals during traditional freezing process will destroy food tissues and lead to quality deterioration. Therefore, how to improve the quality of frozen food by new freezing technology has become a research hotspot. Magnetic field-assisted freezing is a novel method for controlling ice crystal nucleation. The mechanism of magnetic field-regulated ice crystal nucleation and its applications in the fields of fruits and vegetables, livestock and poultry meat, cereals and other food products are reviewed in the present paper. According to the review results, although magnetic field freezing technology has been applied in many food fields, the current research mainly focuses on the effect of magnetic field on frozen food quality and freezing parameters, while there are few consensus on the mechanism of magnetic field-assisted freezing to regulate ice crystal nucleation. Therefore, more systematic research is required to reveal the mechanism of magnetic field-assisted freezing and promote the application of magnetic field-assisted freezing technology in the food field, to promote the quality of frozen food

    COMT, 5-HTR2A, and SLC6A4 mRNA Expressions in First-Episode Antipsychotic-Naïve Schizophrenia and Association With Treatment Outcomes

    Get PDF
    Background: Dopaminergic and serotonergic systems play crucial roles in the pathophysiology of schizophrenia and modulate response to antipsychotic treatment. However, previous studies of dopaminergic and serotonergic genes expression are sparse, and their results have been inconsistent. In this longitudinal study, we aim to investigate the expressions of Catechol-O-methyltransferase (COMT), serotonin 2A receptor (5-HTR2A), and serotonin transporter gene (SLC6A4) mRNA in first-episode antipsychotic-naïve schizophrenia and to test if these mRNA expressions are associated with cognitive deficits and treatment outcomes or not.Method: We measured COMT, 5-HTR2A, and SLC6A4 mRNA expressions in 45 drug-naive first-episode schizophrenia patients and 38 health controls at baseline, and repeated mRNA measurements in all patients at the 8-week follow up. Furthermore, we also assessed antipsychotic response and cognitive improvement after 8 weeks of risperidone monotherapy.Results: Patients were divided into responders (N = 20) and non-responders groups (N = 25) according to the Remission criteria of the Schizophrenia Working Group. Both patient groups have significantly higher COMT mRNA expression and lower SLC6A4 mRNA expression when compared with healthy controls. Interestingly, responder patients have significantly higher levels of COMT and 5-HTR2A mRNA expressions than non-responder patients at baseline. However, antipsychotic treatment has no significant effect on the expressions of COMT, 5-HTR2A, and SLC6A4 mRNA over 8-week follow up.Conclusion: Our findings suggest that dysregulated COMT and SLC6A4 mRNA expressions may implicate in the pathophysiology of schizophrenia, and that COMT and 5-HTR2A mRNA may be potential biomarkers to predict antipsychotic response

    Optimization of a static headspace GC-MS method and its application in metabolic fingerprinting of the leaf volatiles of 42 citrus cultivars

    Get PDF
    Citrus leaves, which are a rich source of plant volatiles, have the beneficial attributes of rapid growth, large biomass, and availability throughout the year. Establishing the leaf volatile profiles of different citrus genotypes would make a valuable contribution to citrus species identification and chemotaxonomic studies. In this study, we developed an efficient and convenient static headspace (HS) sampling technique combined with gas chromatography-mass spectrometry (GC-MS) analysis and optimized the extraction conditions (a 15-min incubation at 100 ËšC without the addition of salt). Using a large set of 42 citrus cultivars, we validated the applicability of the optimized HS-GC-MS system in determining leaf volatile profiles. A total of 83 volatile metabolites, including monoterpene hydrocarbons, alcohols, sesquiterpene hydrocarbons, aldehydes, monoterpenoids, esters, and ketones were identified and quantified. Multivariate statistical analysis and hierarchical clustering revealed that mandarin (Citrus reticulata Blanco) and orange (Citrus sinensis L. Osbeck) groups exhibited notably differential volatile profiles, and that the mandarin group cultivars were characterized by the complex volatile profiles, thereby indicating the complex nature and diversity of these mandarin cultivars. We also identified those volatile compounds deemed to be the most useful in discriminating amongst citrus cultivars. This method developed in this study provides a rapid, simple, and reliable approach for the extraction and identification of citrus leaf volatile organic compound, and based on this methodology, we propose a leaf volatile profile-based classification model for citrus

    Proceedings of the 29th EG-ICE International Workshop on Intelligent Computing in Engineering

    Get PDF
    This publication is the Proceedings of the 29th EG-ICE International Workshop on Intelligent Computing in Engineering from July 6-8, 2022. The EG-ICE International Workshop on Intelligent Computing in Engineering brings together international experts working on the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolution of challenges such as supporting multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways. &nbsp

    Proceedings of the 29th EG-ICE International Workshop on Intelligent Computing in Engineering

    Get PDF
    This publication is the Proceedings of the 29th EG-ICE International Workshop on Intelligent Computing in Engineering from July 6-8, 2022. The EG-ICE International Workshop on Intelligent Computing in Engineering brings together international experts working on the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolution of challenges such as supporting multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways. &nbsp

    Study on the relation between mineral compositions of rock and construction characteristics of tunnel in cold regions: a case

    Get PDF
    Mineral composition of rock has a very important influence on the physical and mechanical properties of tunnel surrounding rock. Take Dangjianshan tunnel in cold regions for example, the rock specimens in different parts of tunnel were taken to carry out the detection test of mineral composition. By the detail qualitative and quantitative analysis, the relationship between mineral composition and surrounding rock engineering properties was explored. First of all, the composition and content of minerals contained in in the rock specimens were detected by X ray fluorescence spectrometer and X ray powder diffraction. The detection results show that rock of tunnel contains high hardness minerals such as quartz and feldspar which were proven by initial engineering geological investigation report, in addition, it also contains several kinds of low hardness minerals including inclined chlorite and illite which may exhibit large deformation characteristic of soft rock after the tunnel excavation in case of meeting water and weathering conditions. The total content of inclined chlorite and illite accounted for a considerable component in main tunnel, inclined shaft and parallel pilot respectively and the influence on surrounding rock engineering properties cannot be ignored. Therefore, mineral composition detection must be paid attention to after tunnel excavation. Secondly, the effects of mineral composition on surrounding rock were analyzed in aspects of rock strength, weathering resistance, water softening property and excavation deformation through comparing the rock samples in different parts of tunnel. The comparative results showed that when the mineral contents is high with high hardness and poor hydrophilicity, tunnel surrounding rock plays a better performance of physical and mechanical properties, vice versa. Finally, according to the specific geological and construction parameters of the tunnel, the correlation analysis was studied about the vault settlement after tunnel excavation and the hydrophilicity mineral content in main cave. The logarithmic relationship between them was found and the correlation coefficient was 0.98. It can provide a useful reference for the settlement prediction of Dangjinshan tunnel construction

    Involvement of noncoding RNA in blood-brain barrier integrity in central nervous system disease

    No full text
    Given the important role of the blood-brain barrier (BBB) in the central nervous system (CNS), increasing studies have been carried out to determine how the structural and functional integrity of the BBB impacts the pathogenesis of CNS diseases such as stroke, traumatic brain injuries (TBIs), and gliomas. Emerging studies have revealed that noncoding RNAs (ncRNAs) help to maintain the integrity and permeability of the BBB, thereby mediating CNS homeostasis. This review summarizes recent studies that focus on the effects of ncRNAs on the BBB in CNS diseases, including regulating the biological processes of inflammation, necrosis, and apoptosis of cells, affecting the translational dysfunction of proteins and regulating tight junctions (TJs). A comprehensive and detailed understanding of the interaction between ncRNAs and the BBB will lay a solid foundation for the development of early diagnostic methods and effective treatments for CNS diseases
    • …
    corecore