93 research outputs found
Monoclonal Antibody for the Prevention of Respiratory Syncytial Virus in Infants and Children: A Systematic Review and Network Meta-analysis
IMPORTANCE: Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory infection in children younger than 5 years; effective prevention strategies are urgently needed.
OBJECTIVE: To compare the efficacy and safety of monoclonal antibodies for the prevention of RSV infection in infants and children.
DATA SOURCES: In this systematic review and network meta-analysis, PubMed, Embase, CENTRAL, and ClinicalTrials.gov were searched from database inception to March 2022.
STUDY SELECTION: Randomized clinical trials that enrolled infants at high risk of RSV infection to receive a monoclonal antibody or placebo were included. Keywords and extensive vocabulary related to monoclonal antibodies, RSV, and randomized clinical trials were searched.
DATA EXTRACTION AND SYNTHESIS: The Preferred Reporting Items for Systematic Reviews and Meta-analyses reporting guideline was used. Teams of 2 reviewers independently performed literature screening, data extraction, and risk of bias assessment. The Grading of Recommendations, Assessments, Developments, and Evaluation approach was used to rate the certainty of evidence. A random-effects model network meta-analysis was conducted using a consistency model under the frequentist framework.
MAIN OUTCOMES AND MEASURES: The main outcomes were all-cause mortality, RSV-related hospitalization, RSV-related infection, drug-related adverse events, intensive care unit admission, supplemental oxygen use, and mechanical ventilation use.
RESULTS: Fifteen randomized clinical trials involving 18 395 participants were eligible; 14 were synthesized, with 18 042 total participants (median age at study entry, 3.99 months [IQR, 3.25-6.58 months]; median proportion of males, 52.37% [IQR, 50.49%-53.85%]). Compared with placebo, with moderate- to high-certainty evidence, nirsevimab, palivizumab, and motavizumab were associated with significantly reduced RSV-related infections per 1000 participants (nirsevimab: -123 [95% CI, -138 to -100]; palivizumab: -108 [95% CI, -127 to -82]; motavizumab: -136 [95% CI, -146 to -125]) and RSV-related hospitalizations per 1000 participants (nirsevimab: -54 [95% CI, -64 to -38; palivizumab: -39 [95% CI, -48 to -28]; motavizumab: -48 [95% CI, -58 to -33]). With moderate-certainty evidence, both motavizumab and palivizumab were associated with significant reductions in intensive care unit admissions per 1000 participants (-8 [95% CI, -9 to -4] and -5 [95% CI, -7 to 0], respectively) and supplemental oxygen use per 1000 participants (-59 [95% CI, -63 to -54] and -55 [95% CI, -61 to -41], respectively), and nirsevimab was associated with significantly reduced supplemental oxygen use per 1000 participants (-59 [95% CI, -65 to -40]). No significant differences were found in all-cause mortality and drug-related adverse events. Suptavumab did not show any significant benefits for the outcomes of interest.
CONCLUSIONS AND RELEVANCE: In this study, motavizumab, nirsevimab, and palivizumab were associated with substantial benefits in the prevention of RSV infection, without a significant increase in adverse events compared with placebo. However, more research is needed to confirm the present conclusions, especially for safety and cost-effectiveness
Baicalin-aluminum alleviates necrotic enteritis in broiler chickens by inhibiting virulence factors expression of Clostridium perfringens
Clostridium perfringens type A is the main cause of necrotic enteritis (NE) in chickens. Since the use of antibiotics in feed is withdrawn, it is imperative to find out suitable alternatives to control NE. Baicalin-aluminum complex is synthesized from baicalin, a flavonoid isolated from Scutellaria baicalensis Georgi. The present study investigated the effects of baicalin-aluminum on the virulence-associated traits and virulence genes expression of C. perfringens CVCC2030, it also evaluated the in vivo therapeutic effect on NE. The results showed that baicalin-aluminum inhibited bacterial hemolytic activity, diminished biofilm formation, attenuated cytotoxicity to Caco-2 cells, downregulated the expression of genes encoding for clostridial toxins and extracellular enzymes such as alpha toxin (CPA), perfringolysin O (PFO), collagenase (ColA), and sialidases (NanI, NanJ). Additionally, baicalin-aluminum was found to negatively regulate the expression of genes involved in quorum sensing (QS) communication, including genes of Agr QS system (agrB, agrD) and genes of VirS/R two-component regulatory system (virS, virR). In vivo experiments, baicalin-aluminum lightened the intestinal lesions and histological damage, it inhibited pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) expression in the jejunal and ileal tissues. Besides, baicalin-aluminum alleviated the upregulation of C. perfringens and Escherichia coli and raised the relative abundance of Lactobacillus in the ileal digesta. This study suggests that baicalin-aluminum may be a potential candidate against C. perfringens infection by inhibiting the virulence-associated traits and virulence genes expression
Characterization of garlic oil/β-cyclodextrin inclusion complexes and application
Garlic oil is a liquid extracted from garlic that has various natural antibacterial and anti-inflammatory properties and is believed to be used to prevent and treat many diseases. However, the main functional components of garlic oil are unstable. Therefore, in this study, encapsulating garlic oil with cyclodextrin using the saturated co-precipitation method can effectively improve its chemical stability and water solubility and reduce its characteristic odor and taste. After preparation, the microcapsules of garlic oil cyclodextrin were characterized, which proved that the encapsulation was successful. Finally, the results showed that the encapsulated garlic oil still had antioxidant ability and slow-release properties. The final addition to plant-based meat gives them a delicious flavor and adds texture and mouthfeel. Provided a new reference for the flavor application of garlic cyclodextrin micro-capsules in plant-based meat patties
The antioxidant activity of polysaccharides from Armillaria gallica
The purpose of this study was to investigate the antioxidant activity of Armillaria gallica polysaccharides. It explored whether Armillaria gallica polysaccharides (AgP) could prevent HepG2 cells from H2O2-induced oxidative damage. The results demonstrated that HepG2 cells were significantly protected by AgP, and efficiently suppressed the production of reactive oxygen species (ROS) in HepG2 cells. Additionally, AgP significantly decreased the abnormal leakage of alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) caused by H2O2, protecting cell membrane integrity. It was discovered that AgP was also found to regulate the activities of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX), while reducing malondialdehyde (MDA), thus protecting cells from oxidative damage. According to the flow cytometry analysis and measurement of caspase-3, caspase-8, and caspase-9 activities, AgP could modulate apoptosis-related proteins and attenuate ROS-mediated cell apoptosis
Ethnopharmacokinetic- and Activity-Guided Isolation of a New Antidepressive Compound from Fructus Aurantii Found in the Traditional Chinese Medicine Chaihu-Shugan-San: A New Approach and Its Application
Aims. We aimed to identify an antidepressive compound found in traditional Chinese medicine (TCM) by a new approach called ethnopharmacokinetic- and activity-guided isolation (EAGI). Methods. The new approach targets an unknown chromatographic peak produced by an absorbed compound found in oral Chaihu-Shugan-San (CSS) taken by patients with depression. Once the compound was isolated from Fructus Aurantii (FA), spectral data was employed to identify the compound. The effects of this compound, FA, and CSS on depressive behaviors were investigated. Results. The identified compound was merazin hydrate (MH) according to the new approach. MH, FA, and CSS significantly reduced immobility time and increased locomotor activity. The effects of MH, FA and CSS were similar to Fluoxetine at high doses. Conclusion. MH, a compound whose antidepressive effect is similar to FA and CSS, was isolated for the first time from FA via targeting its corresponding unknown chromatographic peak, and its antidepressive effect was compared with FA or CSS. These findings highlight the potential for drug R&D and pharmacological research of ∼100,000 TCMs
A Novel Facile and Green Synthesis Protocol to Prepare High Strength Regenerated Silk Fibroin/SiO 2 Composite Fiber
Abstract(#br)In this work, regenerated silk fibroin (RSF) and silicon dioxide (SiO 2 ) composite fiber was successfully extruded by wet spinning method. The effect of SiO 2 addition on structure of the composite fiber at microscopic level is studied, which subsequently correlated to the mechanical performance. The best concentration ratio for composite fiber is identified by screening SiO 2 concentration from 0.025 w/w% to 0.5 w/w%. The experimental results revealed that the SiO 2 at a low concentration of 0.1 w/w% was well distributed. The breaking stress, breaking strain and Young’s modulus at 0.1 w/w% SiO 2 addition of the RSF fibers increased considerably compared to the neat RSF fibers from 243±3 to 458±21 MPa, 51±4 % to 54±7 % and 6.34±0.55 to 11.69±1.12 GPa, respectively. To the..
Potential of Core-Collapse Supernova Neutrino Detection at JUNO
JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve
Detection of the Diffuse Supernova Neutrino Background with JUNO
As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO
Real-time Monitoring for the Next Core-Collapse Supernova in JUNO
Core-collapse supernova (CCSN) is one of the most energetic astrophysical
events in the Universe. The early and prompt detection of neutrinos before
(pre-SN) and during the SN burst is a unique opportunity to realize the
multi-messenger observation of the CCSN events. In this work, we describe the
monitoring concept and present the sensitivity of the system to the pre-SN and
SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is
a 20 kton liquid scintillator detector under construction in South China. The
real-time monitoring system is designed with both the prompt monitors on the
electronic board and online monitors at the data acquisition stage, in order to
ensure both the alert speed and alert coverage of progenitor stars. By assuming
a false alert rate of 1 per year, this monitoring system can be sensitive to
the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos
up to about 370 (360) kpc for a progenitor mass of 30 for the case
of normal (inverted) mass ordering. The pointing ability of the CCSN is
evaluated by using the accumulated event anisotropy of the inverse beta decay
interactions from pre-SN or SN neutrinos, which, along with the early alert,
can play important roles for the followup multi-messenger observations of the
next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure
Bidisperse Magnetic Particles Coated with Gelatin and Graphite Oxide: Magnetorheology, Dispersion Stability, and the Nanoparticle-Enhancing Effect
The magnetorheology and dispersion stability of bidisperse magnetic particles (BMP)-based magnetorheological (MR) fluids were improved by applying a novel functional coating composed of gelatin and graphite oxide (GO) to the surfaces of the micron-sized carbonyl iron (CI) and nanoparticles Fe3O4. Gelatin acted as a grafting agent to reduce the aggregation and sedimentation of CI particles and prevent nanoparticles Fe3O4 from oxidation. In addition, a dense GO network on the surface of gelatin-coated BMP was synthesized by self-assembly to possess a better MR performance and redispersibility. The rheological properties of MR fluids containing dual-coated BMP were measured by a rotational rheometer under the presence of magnetic field and their dispersion stability was examined through sedimentation tests. The results showed that CI@Fe3O4@Gelatin@GO (CI@Fe3O4@G@GO) particles possessed enhanced MR properties and dispersion stability. In addition, the nanoparticle-enhancing effects on the dispersion stability of BMP-based MR fluids were investigated using Monte Carlo simulations
- …