17 research outputs found

    Transition metal chalcogenides, MXene, and their hybrids : An emerging electrochemical capacitor electrodes

    Get PDF
    The amelioration of the human population and their reliance on energy-consuming devices have increased the global energy thirst, as well as the need for new, cleaner energy storage technology. Generally, storage devices are associated with batteries and fuel cells, but nowadays, supercapacitors are being used in laptops, cameras, cellphones, vehicles, and even airbuses, as they can quickly store a large number of charges and also have a long-life cycle and a large power density. However, they have a comparably lower energy density, which pragmatically binds their applications. Herein, we present a forward-looking review of 2D (two dimensional) TMDs (transition metal dichalcogenides) and MXene-based materials for their promising properties like unique electronics and tunable surface chemistry with their synthesis protocol, fundamental properties, and state-of-the-art electrochemical activity in supercapacitors. Finally, we discuss the challenges that restrict the electrochemical properties of pristine TMDs and MXene. And these problems have led to progress by encouraging the development of various derivatives and compositions of these materials to address these issues and improve their performance in emerging energy storage technologies

    Comparison of Superchilling and Supercooling on Extending the Fresh Quality of Beef Loin

    No full text
    This study compared the effects of superchilling and supercooling preservations for 15 days on the freshness and quality characteristics of beef loin. Beef freshness was evaluated by total aerobic count (TAC), total volatile basic nitrogen (TVB-N), and thiobarbituric acid reactive substances (TBARS), and instrumental color, drip loss, cooking loss, and texture profile analysis (TPA) were determined as quality parameters. All assays were compared with fresh control and normal chilling conditions (4 °C). The mean preservation temperatures of superchilling and supercooling were −3.9 °C and −2.1 °C, respectively. The freshness parameters indicated that both superchilling and supercooling extended the freshness of beef loin for 15 days, while chilled beef could not maintain the standard of freshness conditions. For quality parameters, there was no difference between the control and supercooling treatments, whereas superchilling exhibited higher drip loss and toughness compared to the control (p < 0.05). Therefore, this study demonstrated that supercooling was the best preservation technique to extend the freshness and quality of beef loin, but superchilling was not suitable to guarantee the quality of beef

    Chemical Nature of Electrode and the Switching Response of RF-Sputtered NbOx Films

    No full text
    In this study, the dominant role of the top electrode is presented for Nb2O5-based devices to demonstrate either the resistive switching or threshold characteristics. These Nb2O5-based devices may exhibit different characteristics depending on the selection of electrode. The use of the inert electrode (Au) initiates resistive switching characteristics in the Au/Nb2O5/Pt device. Alternatively, threshold characteristics are induced by using reactive electrodes (W and Nb). The X-ray photoelectron spectroscopy analysis confirms the presence of oxide layers of WOy and NbOx at interfaces for W and Nb as top electrodes. However, no interface layer between the top electrode and active layer is detected in X-ray photoelectron spectroscopy for Au as the top electrode. Moreover, the dominant phase is Nb2O5 for Au and NbO2 for W and Nb. The threshold characteristics are attributed to the reduction of Nb2O5 phase to NbO2 due to the interfacial oxide layer formation between the reactive top electrode and Nb2O5. Additionally, reliability tests for both resistive switching and threshold characteristics are also performed to confirm switching stabilities

    Evaluation of the Physicochemical and Structural Properties and the Sensory Characteristics of Meat Analogues Prepared with Various Non-Animal Based Liquid Additives

    No full text
    This study investigates the effects of various non-animal-based liquid additives on the physicochemical, structural, and sensory properties of meat analogue. Meat analogue was prepared by blending together textured vegetable protein (TVP), soy protein isolate (SPI), and other liquid additives. Physicochemical (rheological properties, cooking loss (CL), water holding capacity (WHC), texture and color), structural (visible appearance and microstructure), and sensory properties were evaluated. Higher free water content of meat analogue due to water treatment resulted in a decrease in viscoelasticity, the highest CL value, the lowest WHC and hardness value, and a porous structure. Reversely, meat analogue with oil treatment had an increase in viscoelasticity, the lowest CL value, the highest WHC and hardness value, and a dense structure due to hydrophobic interactions. SPI had a positive effect on the gel network formation of TVP matrix, but lecithin had a negative effect resulting in a decrease in viscoelasticity, WHC, hardness value and an increase in CL value and pore size at microstructure. The results of sensory evaluation revealed that juiciness was more affected by water than oil. Oil treatment showed high intensity for texture parameters. On the other hand, emulsion treatment showed high preference scores for texture parameters and overall acceptance

    Conditions of the Stepwise Cooling Algorithm for Stable Supercooling Preservation and Freshness of Pork Loin

    No full text
    Supercooling has the advantage of maintaining the freshness of foods without a phase transition. However, it is hard to sustain the supercooled state. Static temperature control, one of the various supercooling technologies, is used for stable supercooling storage. In this experiment, the effect of following external factors in maintaining the supercooled state of foods was investigated. Three main parameters had an effect on the supercooled state of food: (1) properly setting the lower-temperature limit of the supercooling algorithm, (2) slow cooling to the target temperature, and (3) minimizing temperature fluctuation. Accordingly, the following stepwise cooling algorithm for pork loin was designed: a lower-temperature limit of −3.0 °C and a storage period = 36 h followed by a lower-temperature limit of −3.5 °C for 24 h. The samples conserved at −3.0 °C displayed a 100% supercooled state. Physicochemical properties including drip loss, cooking loss, texture, color, total volatile basic nitrogen (TVBN), and total aerobic count (TAC) of pork loin were analyzed. The drip loss values of the supercooled meat samples were lower than those of the superchilled ones. Furthermore, TVBN and TAC of the treated samples were not significantly different from those of the fresh samples (p > 0.05). In conclusion, supercooling storage extended the freshness and quality of pork loin better than refrigerated storage

    Ag back electrode bonding process for inverted organic solar cells

    No full text
    A new style of forming Ag back electrode for organic solar cells (OSCs) using a bonding process was compared with a conventional screen-printed Ag. All the fabrication process steps have been conducted under atmospheric conditions at room temperature without using a glove box. The OSCs with both screen-printed and bonded Ag back electrode exhibited comparable performances with the average power conversion efficiencies of 1.28% and 1.31%, respectively. The series and the shunt resistance values for the OSC with the bonded Ag were slightly better than those with the screen printed Ag. The binder resin at the interface between the PEDOT:PSS and the Ag may increase contact resistance for the screen-printed Ag process, while that between the Ag and the PET film for the bonded Ag process may not increase it. The bonding process for the Ag back electrode has the potential for future electronic device applications. (C) 2018 Elsevier B.V. All rights reserved

    Stable and Multilevel Data Storage Resistive Switching of Organic Bulk Heterojunction

    No full text
    Organic nonvolatile memory devices have a vital role for the next generation of electrical memory units, due to their large scalability and low-cost fabrication techniques. Here, we show bipolar resistive switching based on an Ag/ZnO/P3HT-PCBM/ITO device in which P3HT-PCBM acts as an organic heterojunction with inorganic ZnO protective layer. The prepared memory device has consistent DC endurance (500 cycles), retention properties (104 s), high ON/OFF ratio (105), and environmental stability. The observation of bipolar resistive switching is attributed to creation and rupture of the Ag filament. In addition, our conductive bridge random access memory (CBRAM) device has adequate regulation of the current compliance leads to multilevel resistive switching of a high data density storage

    Neuro-Transistor Based on UV-Treated Charge Trapping in MoTe2 for Artificial Synaptic Features

    No full text
    The diversity of brain functions depend on the release of neurotransmitters in chemical synapses. The back gated three terminal field effect transistors (FETs) are auspicious candidates for the emulation of biological functions to recognize the proficient neuromorphic computing systems. In order to encourage the hysteresis loops, we treated the bottom side of MoTe2 flake with deep ultraviolet light in ambient conditions. Here, we modulate the short-term and long-term memory effects due to the trapping and de-trapping of electron events in few layers of a MoTe2 transistor. However, MoTe2 FETs are investigated to reveal the time constants of electron trapping/de-trapping while applying the gate-voltage pulses. Our devices exploit the hysteresis effect in the transfer curves of MoTe2 FETs to explore the excitatory/inhibitory post-synaptic currents (EPSC/IPSC), long-term potentiation (LTP), long-term depression (LTD), spike timing/amplitude-dependent plasticity (STDP/SADP), and paired pulse facilitation (PPF). Further, the time constants for potentiation and depression is found to be 0.6 and 0.9 s, respectively which seems plausible for biological synapses. In addition, the change of synaptic weight in MoTe2 conductance is found to be 41% at negative gate pulse and 38% for positive gate pulse, respectively. Our findings can provide an essential role in the advancement of smart neuromorphic electronics
    corecore