55 research outputs found

    The association between retina thinning and hippocampal atrophy in Alzheimer’s disease and mild cognitive impairment: a meta-analysis and systematic review

    Get PDF
    IntroductionThe retina is the “window” of the central nervous system. Previous studies discovered that retinal thickness degenerates through the pathological process of the Alzheimer’s disease (AD) continuum. Hippocampal atrophy is one of the typical clinical features and diagnostic criteria of AD. Former studies have described retinal thinning in normal aging subjects and AD patients, yet the association between retinal thickness and hippocampal atrophy in AD is unclear. The optical coherence tomography (OCT) technique has access the non-invasive to retinal images and magnetic resonance imaging can outline the volume of the hippocampus. Thus, we aim to quantify the correlation between these two parameters to identify whether the retina can be a new biomarker for early AD detection.MethodsWe systematically searched the PubMed, Embase, and Web of Science databases from inception to May 2023 for studies investigating the correlation between retinal thickness and hippocampal volume. The Newcastle-Ottawa Quality Assessment Scale (NOS) was used to assess the study quality. Pooled correlation coefficient r values were combined after Fisher’s Z transformation. Moderator effects were detected through subgroup analysis and the meta-regression method.ResultsOf the 1,596 citations initially identified, we excluded 1,062 studies after screening the titles and abstract (animal models, n = 99; irrelevant literature, n = 963). Twelve studies met the inclusion criteria, among which three studies were excluded due to unextractable data. Nine studies were eligible for this meta-analysis. A positive moderate correlation between the retinal thickness was discovered in all participants of with AD, mild cognitive impairment (MCI), and normal controls (NC) (r = 0.3469, 95% CI: 0.2490–0.4377, I2 = 5.0%), which was significantly higher than that of the AD group (r = 0.1209, 95% CI:0.0905–0.1510, I2 = 0.0%) (p < 0.05). Among different layers, the peripapillary retinal nerve fiber layer (pRNFL) indicated a moderate positive correlation with hippocampal volume (r = 0.1209, 95% CI:0.0905–0.1510, I2 = 0.0%). The retinal pigmented epithelium (RPE) was also positively correlated [r = 0.1421, 95% CI:(−0.0447–0.3192), I2 = 84.1%]. The retinal layers and participants were the main overall heterogeneity sources. Correlation in the bilateral hemisphere did not show a significant difference.ConclusionThe correlation between RNFL thickness and hippocampal volume is more predominant in both NC and AD groups than other layers. Whole retinal thickness is positively correlated to hippocampal volume not only in AD continuum, especially in MCI, but also in NC.Systematic review registrationhttps://www.crd.york.ac.uk/PROSPERO/, CRD42022328088

    Becoming an Academic Administrator

    No full text

    Effects of Cetuximab Combined with Celecoxib on Apoptosis and KDR and AQP1 
Expression in Lung Cancer

    No full text
    Background and objective Neoadjuvant chemotherapy is a new development in the treatment of lung cancer. In recent years, cetuximab and celecoxib have been commonly used in this procedure. This study aims to explore the effect of cetuximab combined with celecoxib on apoptosis and KDR and AQP1 expression in lung cancer A549 cells. Method The cells were cultured in RPMI-1640 and then divided into four groups: control group, 1 nmol/L cetuximab group, 25 µmol/L celecoxib group, and 1 nmol/L cetuximab+25 µmol/L celecoxib group. The treatment time was 48 h. The mRNA and protein expression levels of KDR and AQP1 were detected by RT-PCR and Western blot, respectively. The apoptosis, proliferation, and invasive ability of A549 cells before and after transfection were examined using flow cytometry, MTT, and transwell methods. Results Cetuximab and celecoxib inhibited the growth of A549 cells in a dose-dependent manner. Their combination produced a greater growth inhibition than when either was used alone (P<0.01). Cetuximab and celecoxib both induced the apoptosis of A549 cells, and their combination produced a higher apoptosis rate (P<0.01). Cetuximab in combination with celecoxib also induced G1 phase arrest and downregulated the expression of KDR and AQP1 in A549 cells (P<0.05). As a result, the invasion ability of the A549 cells was significantly decreased. Conclusion Cetuximab in combination with celecoxib can synergistically inhibit the growth of A549 cells and downregulate the expression of KDR and AQP1 in A549 cells. The combination of cetuximab and celecoxib is a potential strategy for lung cancer therapy

    sncRNAs in Epididymosomes: The Contribution to Embryonic Development and Offspring Health

    No full text
    Much progress has been made in determining that paternal environmental exposures can remodel their spermatozoa small noncoding RNAs (sncRANs) and, in turn, affect the phenotypes of their offspring. Studies have shown that changes in the spermatozoa sncRNAs profile occur during passing through the epididymis. Due to the absence of transcription and translation in the epididymis, spermatozoa remodel their sncRNAs profile through communication with the epididymal microenvironment. Since epididymosomes contribute to the process of spermatozoa maturation by mediating the crosstalk between the epididymis and the passing spermatozoa, they are considered to be the leading candidate to mediate these changes. Previous studies and reviews on the role of epididymal transfer proteins in sperm maturation and function are myriad. This review focuses on the role and mechanisms of epididymosome-mediated transfer of sncRNAs cargoes onembryonic development and offspring health

    Cloud Service Scheduling Algorithm Research and Optimization

    No full text
    We propose a cloud service scheduling model that is referred to as the Task Scheduling System (TSS). In the user module, the process time of each task is in accordance with a general distribution. In the task scheduling module, we take a weighted sum of makespan and flowtime as the objective function and use an Ant Colony Optimization (ACO) and a Genetic Algorithm (GA) to solve the problem of cloud task scheduling. Simulation results show that the convergence speed and output performance of our Genetic Algorithm-Chaos Ant Colony Optimization (GA-CACO) are optimal

    A Dynamic Travel Time Estimation Model Based on Connected Vehicles

    No full text
    With advances in connected vehicle technology, dynamic vehicle route guidance models gradually become indispensable equipment for drivers. Traditional route guidance models are designed to direct a vehicle along the shortest path from the origin to the destination without considering the dynamic traffic information. In this paper a dynamic travel time estimation model is presented which can collect and distribute traffic data based on the connected vehicles. To estimate the real-time travel time more accurately, a road link dynamic dividing algorithm is proposed. The efficiency of the model is confirmed by simulations, and the experiment results prove the effectiveness of the travel time estimation method

    A 28 GHz Linear Power Amplifier Based on CPW Matching Networks with Series-Connected DC-Blocking Capacitors

    No full text
    In this paper, the influence of the DC-blocking capacitors leveraged in coplanar waveguide (CPW) matching networks is studied. CPW matching networks with series-connected DC-blocking capacitors are less sensitive to capacitance and are adopted in a 28 GHz power amplifier (PA). The PA targeting fifth-generation (5G) phased array is developed in 90 nm silicon-on-insulator complementary-metal-oxide-semiconductor (SOI CMOS) technology. A stacked field-effect-transistor (FET) architecture is elected in the output stage to boost the output power and reduce the die area. The PA with a core area of 0.31 mm2 demonstrates a maximum small signal gain of 13.7 dB and a &minus;3 dB bandwidth of 6.3 GHz (22.9&ndash;29.2 GHz). The PA achieves a measured saturated output power (Psat) of 14.4 dBm and a peak power added efficiency (PAE) of 25% for continuous wave signals. At 24/25.6/28 GHz, the PA achieves +7.87/+9.16/+10.7 dBm measured output power and 6.21%/8.11%/10.17% PAE at &minus;25 dBc error vector magnitude(EVM) for a 250 MHz-wide 64-quadrature amplitude modulation (64-QAM). The developed linear PA provides a great potential for low-cost 5G phased array transceivers
    corecore