127 research outputs found

    Towards Multi-perspective Conformance Checking with Fuzzy Sets

    Get PDF
    Nowadays organizations often need to employ data-driven techniques to audit their business processes and ensure they comply with laws and internal/external regulations. Failing in complying with the expected process behavior can indeed pave the way to inefficiencies or, worse, to frauds or abuses. An increasingly popular approach to automatically assess the compliance of the executions of organization processes is represented by alignment-based conformance checking. These techniques are able to compare real process executions with models representing the expected behaviors, providing diagnostics able to pinpoint possible discrepancies. However, the diagnostics generated by state of the art techniques still suffer from some limitations. They perform a crisp evaluation of process compliance, marking process behavior either as compliant or deviant, without taking into account the severity of the identified deviation. This hampers the accuracy of the obtained diagnostics and can lead to misleading results, especially in contexts where there is some tolerance with respect to violations of the process guidelines. In the present work, we discuss the impact and the drawbacks of a crisp deviation assessment approach. Then, we propose a novel conformance checking approach aimed at representing actors’ tolerance with respect to process deviations, taking it into account when assessing the severity of the deviations. As a proof of concept, we performed a set of synthetic experiments to assess the approach. The obtained results point out the potential of the usage of a more flexible evaluation of process deviations, and its impact on the quality and the interpretation of the obtained diagnostics

    Evidence of Noncollinear Spin Texture in Magnetic Moir\'e Superlattices

    Full text link
    Moir\'e magnetism, parallel with moir\'e electronics that has led to novel correlated and topological electronic states, emerges as a new venue to design and control exotic magnetic phases in twisted magnetic two-dimensional(2D) crystals. Here, we report direct evidence of noncollinear spin texture in 2D twisted double bilayer (tDB) magnet chromium triiodide (CrI3_3). Using magneto-optical spectroscopy in tDB CrI3_3, we revealed the presence of a net magnetization, unexpected from the composing antiferromagnetic bilayers with compensated magnetizations, and the emergence of noncollinear spins, originated from the moir\'e exchange coupling-induced spin frustrations. Exploring the twist angle dependence, we demonstrated that both features are present in tDB CrI3_3 with twist angles from 0.5o^o to 5o^o, but are most prominent in the 1.1o^o tDB CrI3_3. Focusing on the temperature dependence of the 1.1o^o tDB CrI3_3, we resolved the dramatic suppression in the net magnetization onset temperature and the significant softening of noncollinear spins, as a result of the moir\'e induced frustration. Our results demonstrate the power of moir\'e superlattices in introducing novel magnetic phenomena that are absent in natural 2D magnets

    Revealing intrinsic domains and fluctuations of moir\'e magnetism by a wide-field quantum microscope

    Full text link
    Moir\'e magnetism featured by stacking engineered atomic registry and lattice interactions has recently emerged as an appealing quantum state of matter at the forefront condensed matter physics research. Nanoscale imaging of moir\'e magnets is highly desirable and serves as a prerequisite to investigate a broad range of intriguing physics underlying the interplay between topology, electronic correlations, and unconventional nanomagnetism. Here we report spin defect-based wide-field imaging of magnetic domains and spin fluctuations in twisted double trilayer (tDT) chromium triiodide CrI3. We explicitly show that intrinsic moir\'e domains of opposite magnetizations appear over arrays of moir\'e supercells in low-twist-angle tDT CrI3. In contrast, spin fluctuations measured in tDT CrI3 manifest little spatial variations on the same mesoscopic length scale due to the dominant driving force of intralayer exchange interaction. Our results enrich the current understanding of exotic magnetic phases sustained by moir\'e magnetism and highlight the opportunities provided by quantum spin sensors in probing microscopic spin related phenomena on two-dimensional flatland

    miR-182 Regulates Metabolic Homeostasis by Modulating Glucose Utilization in Muscle

    Get PDF
    SummaryUnderstanding the fiber-type specification and metabolic switch in skeletal muscle provides insights into energy metabolism in physiology and diseases. Here, we show that miR-182 is highly expressed in fast-twitch muscle and negatively correlates with blood glucose level. miR-182 knockout mice display muscle loss, fast-to-slow fiber-type switching, and impaired glucose metabolism. Mechanistic studies reveal that miR-182 modulates glucose utilization in muscle by targeting FoxO1 and PDK4, which control fuel selection via the pyruvate dehydrogenase complex (PDHC). Short-term high-fat diet (HFD) feeding reduces muscle miR-182 levels by tumor necrosis factor Ξ± (TNFΞ±), which contributes to the upregulation of FoxO1/PDK4. Restoration of miR-182 expression in HFD-fed mice induces a faster muscle phenotype, decreases muscle FoxO1/PDK4 levels, and improves glucose metabolism. Together, our work establishes miR-182 as a critical regulator that confers robust and precise controls on fuel usage and glucose homeostasis. Our study suggests that a metabolic shift toward a faster and more glycolytic phenotype is beneficial for glucose control

    Impacts of plastic film mulching on crop yields, soil water, nitrate, and organic carbon in Northwestern China: A meta-analysis

    Get PDF
    In order to increase crop yield in semi-arid and arid areas, plastic film mulching (PFM) is widely used in Northwestern China. To date, many studies have addressed the effects of PFM on soil physical and biochemical properties in rain-fed agriculture in Northwestern China, but the findings of different studies are often contradictory. Therefore, a comprehensive review of the impacts of PFM on soil water content, soil nutrients and food production is needed. We compiled the results of 1278 observations to evaluate the overall effects of PFM on soil water content, the distribution of nitrate and soil organic carbon, and crop yield in rain-fed agriculture in Northwestern China. Our results showed that PFM increased soil moisture and nitrate concentration in topsoils (0–20 cm) by 12.9% and 28.2%, respectively, but slightly decreased (1.8%) soil organic carbon (SOC) content in the 0–10 cm soil layer. PFM significantly increased grain yields by 43.1%, with greatest effect in spring maize (79.4%). When related to cumulative precipitation during the crop growing season, yield increase from PFM was greatest (72.8%) at 200–300 mm, which was attributed to the large increase for spring maize and potato, implying that crop zoning would be beneficial for PFM in this region. When related to N application rate, crop yields benefited most from PFM (80.2%) at 200–300 kg/ha. A cost-benefit analysis indicated that PFM increased economic return by an average of 29.5%, with the best improvement for spring maize (71.1%) and no increase for spring wheat. In conclusion, PFM can significantly increase crop yield and economic return (especially for spring maize) in rain-fed agriculture areas of Northwestern China. Crop zoning is recommended for PFM to achieve the largest economic benefit. However, full account needs to be taken of the environmental impacts relating to N loss, SOC depletion and film pollution to evaluate the sustainability of PFM systems and further research is required to quantify and mitigate these impacts

    Genome Characterization of the Oleaginous Fungus Mortierella alpina

    Get PDF
    Mortierella alpina is an oleaginous fungus which can produce lipids accounting for up to 50% of its dry weight in the form of triacylglycerols. It is used commercially for the production of arachidonic acid. Using a combination of high throughput sequencing and lipid profiling, we have assembled the M. alpina genome, mapped its lipogenesis pathway and determined its major lipid species. The 38.38 Mb M. alpina genome shows a high degree of gene duplications. Approximately 50% of its 12,796 gene models, and 60% of genes in the predicted lipogenesis pathway, belong to multigene families. Notably, M. alpina has 18 lipase genes, of which 11 contain the class 2 lipase domain and may share a similar function. M. alpina's fatty acid synthase is a single polypeptide containing all of the catalytic domains required for fatty acid synthesis from acetyl-CoA and malonyl-CoA, whereas in many fungi this enzyme is comprised of two polypeptides. Major lipids were profiled to confirm the products predicted in the lipogenesis pathway. M. alpina produces a complex mixture of glycerolipids, glycerophospholipids and sphingolipids. In contrast, only two major sterol lipids, desmosterol and 24(28)-methylene-cholesterol, were detected. Phylogenetic analysis based on genes involved in lipid metabolism suggests that oleaginous fungi may have acquired their lipogenic capacity during evolution after the divergence of Ascomycota, Basidiomycota, Chytridiomycota and Mucoromycota. Our study provides the first draft genome and comprehensive lipid profile for M. alpina, and lays the foundation for possible genetic engineering of M. alpina to produce higher levels and diverse contents of dietary lipids

    Deep Learning From Multiple Crowds: A Case Study of Humanitarian Mapping

    No full text
    • …
    corecore