64 research outputs found

    Learning World Models with Identifiable Factorization

    Full text link
    Extracting a stable and compact representation of the environment is crucial for efficient reinforcement learning in high-dimensional, noisy, and non-stationary environments. Different categories of information coexist in such environments -- how to effectively extract and disentangle these information remains a challenging problem. In this paper, we propose IFactor, a general framework to model four distinct categories of latent state variables that capture various aspects of information within the RL system, based on their interactions with actions and rewards. Our analysis establishes block-wise identifiability of these latent variables, which not only provides a stable and compact representation but also discloses that all reward-relevant factors are significant for policy learning. We further present a practical approach to learning the world model with identifiable blocks, ensuring the removal of redundants but retaining minimal and sufficient information for policy optimization. Experiments in synthetic worlds demonstrate that our method accurately identifies the ground-truth latent variables, substantiating our theoretical findings. Moreover, experiments in variants of the DeepMind Control Suite and RoboDesk showcase the superior performance of our approach over baselines

    Familiarity-based Collaborative Team Recognition in Academic Social Networks

    Get PDF
    Collaborative teamwork is key to major scientific discoveries. However, the prevalence of collaboration among researchers makes team recognition increasingly challenging. Previous studies have demonstrated that people are more likely to collaborate with individuals they are familiar with. In this work, we employ the definition of familiarity and then propose MOTO (faMiliarity-based cOllaborative Team recOgnition algorithm) to recognize collaborative teams. MOTO calculates the shortest distance matrix within the global collaboration network and the local density of each node. Central team members are initially recognized based on local density. Then MOTO recognizes the remaining team members by using the familiarity metric and shortest distance matrix. Extensive experiments have been conducted upon a large-scale data set. The experimental results show that compared with baseline methods, MOTO can recognize the largest number of teams. The teams recognized by MOTO possess more cohesive team structures and lower team communication costs compared with other methods. MOTO utilizes familiarity in team recognition to identify cohesive academic teams. The recognized teams are in line with real-world collaborative teamwork patterns. Based on team recognition using MOTO, the research team structure and performance are further analyzed for given time periods. The number of teams that consist of members from different institutions increases gradually. Such teams are found to perform better in comparison with those whose members are from the same institution

    Evaluation of the performance of a dengue outbreak detection tool for China

    No full text
    An outbreak detection and response system, using time series moving percentile method based on historical data, in China has been used for identifying dengue fever outbreaks since 2008. For dengue fever outbreaks reported from 2009 to 2012, this system achieved a sensitivity of 100%, a specificity of 99.8% and a median time to detection of 3 days, which indicated that the system was a useful decision tool for dengue fever control and risk-management programs in China.This work was supported by the grants from Research and Promotion of Key Technology on Health Emergency Preparation and Dispositions (201202006), the National Key Science and Technology Project on Infectious Disease Surveillance Technique Platform of China (2012ZX10004-201) and Development of Early Warning Systems for Dengue Fever Based on Socio-ecological Factors (NHMRC APP1002608)

    Hand, foot and mouth disease in China: Evaluating an automated system for the detection of outbreaks

    Get PDF
    Objective To evaluate the performance of China's infectious disease automated alert and response system in the detection of outbreaks of hand, foot and mouth (HFM) disease. Methods We estimated size, duration and delay in reporting HFM disease outbreaks from cases notified between 1 May 2008 and 30 April 2010 and between 1 May 2010 and 30 April 2012, before and after automatic alert and response included HFM disease. Sensitivity, specificity and timeliness of detection of aberrations in the incidence of HFM disease outbreaks were estimated by comparing automated detections to observations of public health staff. Findings The alert and response system recorded 106 005 aberrations in the incidence of HFM disease between 1 May 2010 and 30 April 2012 - a mean of 5.6 aberrations per 100 days in each county that reported HFM disease. The response system had a sensitivity of 92.7% and a specificity of 95.0%. The mean delay between the reporting of the first case of an outbreak and detection of that outbreak by the response system was 2.1 days. Between the first and second study periods, the mean size of an HFM disease outbreak decreased from 19.4 to 15.8 cases and the mean interval between the onset and initial reporting of such an outbreak to the public health emergency reporting system decreased from 10.0 to 9.1 days. Conclusion The automated alert and response system shows good sensitivity in the detection of HFM disease outbreaks and appears to be relatively rapid. Continued use of this system should allow more effective prevention and limitation of such outbreaks in China

    Clinical relevance and outcome of familial papillary thyroid cancer: a single institution study of 626 familial cases

    Get PDF
    BackgroundWhether familial thyroid cancer is more aggressive than sporadic thyroid cancer remains controversial. Additionally, whether the number of affected family members affects the prognosis is unknown. This study focused mainly on the comparison of the clinicopathological characteristics and prognoses between papillary thyroid cancer (PTC) patients with and without family history.MethodsA total of 626 familial papillary thyroid cancer (FPTC) and 1252 sporadic papillary thyroid cancer (SPTC) patients were included in our study. The clinical information associated with FPTC and SPTC was recorded and analyzed by univariate analysis.ResultsPatients in the FPTC group had a higher rate of multifocality (p=0.001), bilaterality (p=0.000), extrathyroidal invasion (p=0.000), distant metastasis (p=0.012), lymph node metastasis (p=0.000), recurrence (p=0.000), a larger tumor size (p=0.000) and more malignant lymph nodes involved (central: p=0.000; lateral: p=0.000). In addition, our subgroup analysis showed no significant difference (p>0.05) between patients with only one affected family member and those with two of more group in all clinicopathological characteristics. In papillary thyroid microcarcinoma (PTMC) subgroup analysis, we found that FPTMC patients harbored significantly larger tumors (p=0.000), higher rates of multifocality (p=0.014), bilaterality (p=0.000), distant metastasis (p=0.038), lymph node metastasis (p=0.003), greater numbers of malignant lymph nodes (central: p=0.002; lateral: p=0.044), higher rates of I-131 treatment (p=0.000) and recurrence (p=0.000) than SPTMC patients.ConclusionOur results indicated that PTC and PTMC patients with a positive family history had more aggressive clinicopathological behaviors, suggesting that more vigilant screening and management for FPTC may be helpful

    The epidemiology of Plasmodium vivax and Plasmodium falciparum malaria in China, 2004–2012: from intensified control to elimination

    No full text
    BACKGROUND In China, the national malaria elimination programme has been operating since 2010. This study aimed to explore the epidemiological changes in patterns of malaria in China from intensified control to elimination stages. METHODS Data on nationwide malaria cases from 2004 to 2012 were extracted from the Chinese national malaria surveillance system. The secular trend, gender and age features, seasonality, and spatial distribution by Plasmodium species were analysed. RESULTS In total, 238,443 malaria cases were reported, and the proportion of Plasmodium falciparum increased drastically from <10% before 2010 to 55.2% in 2012. From 2004 to 2006, malaria showed a significantly increasing trend and with the highest incidence peak in 2006 (4.6/100,000), while from 2007 onwards, malaria decreased sharply to only 0.18/100,000 in 2012. Males and young age groups became the predominantly affected population. The areas affected by Plasmodium vivax malaria shrunk, while areas affected by P. falciparum malaria expanded from 294 counties in 2004 to 600 counties in 2012. CONCLUSIONS This study demonstrated that malaria has decreased dramatically in the last five years, especially since the Chinese government launched a malaria elimination programme in 2010, and areas with reported falciparum malaria cases have expanded over recent years. These findings suggest that elimination efforts should be improved to meet these changes, so as to achieve the nationwide malaria elimination goal in China in 2020.This study was supported by grants from the Ministry of Science and Technology of China (2012ZX10004-201, 2012ZX10004-220) and the Ministry of Health of China (No. 201202006), and China UK Global Health Support Programme (grant no. GHSP-CS-OP1). S.I.H. is funded by a Senior Research Fellowship from the Wellcome Trust (#095066). S.I.H. also acknowledges funding support from the RAPIDD programme of the Science & Technology Directorate, Department of Homeland Security, and the Fogarty International Center, National Institutes of Health

    Ultra-Sensitive, Deformable and Transparent Triboelectric Tactile Sensor based on Micro-Pyramid Patterned Ionic Hydrogel for Interactive Human-Machine Interfaces

    Get PDF
    Rapid advances in wearable electronics and mechno-sensational human-machine interfaces impose great challenges in developing flexible and deformable tactile sensors with high efficiency, ultra-sensitivity, environment-tolerance and self-sustainability. Herein, we report a tactile hydrogel sensor (THS) based on micro-pyramid-patterned double-network (DN) ionic organohydrogels to detect subtle pressure changes by measuring the variations of triboelectric output signal without an external power supply. By the first time of pyramidal-patterned hydrogel fabrication method and laminated PDMS encapsulation process, the self-powered THS shows the advantages of remarkable flexibility, good transparency (~85), and excellent sensing performance, including extraordinary sensitivity (45.97 mV Pa-1 ), fast response (~20 ms), very low limit of detection (50 Pa) as well as high stability (36000 cycles). Moreover, with the LiBr immersion treatment method, the THS possesses excellent long-term hyper antifreezing and anti-dehydrating properties, broad environment tolerance (-20 to 60 ℃), and instantaneous peak power density of 20 μW cm-2 , providing reliable contact outputs with different materials and detecting very slight human motions. The THS shows no apparent output decline under the extreme environments of −29℃, 60℃ and even the vacuum conditions, demonstrating the excellent application potential in the field of harsh environments. By integrating the signal acquisition/process circuit, the THS with excellent self-power sensing ability is utilized as a switching button to control electric appliances and robotic hands by simulating human finger gestures, offering its great potentials for wearable and multi-functional electronic applications

    Whole-genome sequencing of <em>Oryza brachyantha</em> reveals mechanisms underlying <em>Oryza</em> genome evolution

    Get PDF
    The wild species of the genus Oryza contain a largely untapped reservoir of agronomically important genes for rice improvement. Here we report the 261-Mb de novo assembled genome sequence of Oryza brachyantha. Low activity of long-terminal repeat retrotransposons and massive internal deletions of ancient long-terminal repeat elements lead to the compact genome of Oryza brachyantha. We model 32,038 protein-coding genes in the Oryza brachyantha genome, of which only 70% are located in collinear positions in comparison with the rice genome. Analysing breakpoints of non-collinear genes suggests that double-strand break repair through non-homologous end joining has an important role in gene movement and erosion of collinearity in the Oryza genomes. Transition of euchromatin to heterochromatin in the rice genome is accompanied by segmental and tandem duplications, further expanded by transposable element insertions. The high-quality reference genome sequence of Oryza brachyantha provides an important resource for functional and evolutionary studies in the genus Oryza

    Viral Etiologies of Hospitalized Acute Lower Respiratory Infection Patients in China, 2009-2013

    Get PDF
    Our findings could serve as robust evidence for public health authorities in drawing up further plans to prevent and control ALRIs associated with viral pathogens. RSV is common in young children and prevention measures could have large public health impact. Influenza was most common in adults and influenza vaccination should be implemented on a wider scale in China
    • …
    corecore