1,290 research outputs found

    Temperature effects on the nuclear symmetry energy and symmetry free energy with an isospin and momentum dependent interaction

    Full text link
    Within a self-consistent thermal model using an isospin and momentum dependent interaction (MDI) constrained by the isospin diffusion data in heavy-ion collisions, we investigate the temperature dependence of the symmetry energy Esym(ρ,T)E_{sym}(\rho, T) and symmetry free energy Fsym(ρ,T)F_{sym}(\rho, T) for hot, isospin asymmetric nuclear matter. It is shown that the symmetry energy Esym(ρ,T)E_{sym}(\rho, T) generally decreases with increasing temperature while the symmetry free energy Fsym(ρ,T)F_{sym}(\rho, T) exhibits opposite temperature dependence. The decrement of the symmetry energy with temperature is essentially due to the decrement of the potential energy part of the symmetry energy with temperature. The difference between the symmetry energy and symmetry free energy is found to be quite small around the saturation density of nuclear matter. While at very low densities, they differ significantly from each other. In comparison with the experimental data of temperature dependent symmetry energy extracted from the isotopic scaling analysis of intermediate mass fragments (IMF's) in heavy-ion collisions, the resulting density and temperature dependent symmetry energy Esym(ρ,T)E_{sym}(\rho, T) is then used to estimate the average freeze-out density of the IMF's.used to estimate the average freeze-out density of the IMF's.Comment: 9 pages, 7 figures, 1 figure added to show the temperature dependence of the potential and kinetic parts of the symmetry energy. Revised version to appear in PR

    Efficient Volumetric Method of Moments for Modeling Plasmonic Thin-Film Solar Cells with Periodic Structures

    Get PDF
    Metallic nanoparticles (NPs) support localized surface plasmon resonances (LSPRs), which enable to concentrate sunlight at the active layer of solar cells. However, full-wave modeling of the plasmonic solar cells faces great challenges in terms of huge computational workload and bad matrix condition. It is tremendously difficult to accurately and efficiently simulate near-field multiple scattering effects from plasmonic NPs embedded into solar cells. In this work, a preconditioned volume integral equation (VIE) is proposed to model plasmonic organic solar cells (OSCs). The diagonal block preconditioner is applied to different material domains of the device structure. As a result, better convergence and higher computing efficiency are achieved. Moreover, the calculation is further accelerated by two-dimensional periodic Green's functions. Using the proposed method, the dependences of optical absorption on the wavelengths and incident angles are investigated. Angular responses of the plasmonic OSCs show the super-Lambertian absorption on the plasmon resonance but near-Lambertian absorption off the plasmon resonance. The volumetric method of moments and explored physical understanding are of great help to investigate the optical responses of OSCs.Comment: 11 pages, 6 figure

    Sound absorption properties of polyurethane-based warp-knitted spacer fabric composites

    Get PDF
    Sound absorption properties of polyurethane-based warp-knitted spacer fabric composites (PWSF) have been studied. The warp-knitted spacer fabrics (WSF) are produced on a double-needle bar warp knitting machine using different structural parameters including inclination angle of spacer yarn, thickness, spacer yarn’s diameter and surface layer structure. The composites are fabricated based on a flexible polyurethane foam. Accordingly, the acoustical behaviors of composites are evaluated properly by using two-microphone transfer function techniques in impedance tube. The findings reveal that the composites possess excellent sound absorption properties and their sound absorbability can be tailored to meet the specificend-use requirements by varying the fabric structural parameters

    Differential isospin-fractionation in dilute asymmetric nuclear matter

    Full text link
    The differential isospin-fractionation (IsoF) during the liquid-gas phase transition in dilute asymmetric nuclear matter is studied as a function of nucleon momentum. Within a self-consistent thermal model it is shown that the neutron/proton ratio of the gas phase becomes {\it smaller} than that of the liquid phase for energetic nucleons, although the gas phase is overall more neutron-rich. Clear indications of the differential IsoF consistent with the thermal model predictions are demonstrated within a transport model for heavy-ion reactions. Future comparisons with experimental data will allow us to extract critical information about the momentum dependence of the isovector strong interaction.Comment: Rapid Communication, Phys. Rev. C (2007) in pres

    Dual-envelop-oriented moving horizon path tracking control for fully automated vehicles

    Get PDF
    A novel description of dual-envelop-oriented path tracking issue is presented for fully automated vehicles which considers shape of vehicle as inner-envelop (I-ENV) and feasible road region as outer-envelop (O-ENV). Then implicit linear model predictive control (MPC) approach is proposed to design moving horizon path tracking controller in order to solve the situations that may cause collision and run out of road in traditional path tracking method. The proposed MPC controller employed varied sample time and varied prediction horizon and could deal with modelling error effectively. In order to specify the effectiveness of the proposed dual-envelop-oriented moving horizon path tracking method, veDYNA-Simulink joint simulations in different running conditions are carried out. The results illustrate that the proposed path tracking scheme performs well in tracking the desired path, and could increase path tracking precision effectively

    NUCLEAR CONSTRAINTS ON PROPERTIES OF NEUTRON STAR CRUSTS

    Get PDF
    The transition density ρt\rho_{t} and pressure PtP_{t} at the inner edge separating the liquid core from the solid crust of neutron stars are systematically studied using a modified Gogny (MDI) and 47 popular Skyrme interactions within well established dynamical and thermodynamical methods. It is shown that the widely used parabolic approximation to the full Equation of State (EOS) of isospin asymmetric nuclear matter may lead to huge errors in estimating the \rho_{t} and P_{t}, especially for stiffer symmetry energy functionals Esym(ρ)E_{sym}(\rho). The \rho_{t} and P_{t} decrease roughly linearly with the increasing slope parameter LL of the Esym(ρ)E_{sym}(\rho) using the full EOS within both methods. It is also shown that the thickness, fractional mass and moment of inertia of neutron star crust are all very sensitive to the parameter LL through the ρt\rho_{t}. Moreover, it is shown that the Esym(ρ)E_{sym}(\rho) constrained in the same sub-saturation density range as the neutron star crust by the isospin diffusion data in heavy-ion collisions at intermediate energies limits the transition density and pressure to 0.040 fm^-3}< \rho_{t} < 0.065 fm^-3 and 0.01 MeV/fm^3 < P_{t} < 0.26MeV/fm3,respectively.Theseconstrainedvaluesforthetransitiondensityandpressurearesignificantlylowerthantheirfiducialvaluescurrentlyusedintheliterature.Furthermore,themassβˆ’radiusrelationandseveralotherpropertiescloselyrelatedtotheneutronstarcrustarestudiedbyusingtheMDIinteraction.Itisfoundthatthenewlyconstrained MeV/fm^3, respectively. These constrained values for the transition density and pressure are significantly lower than their fiducial values currently used in the literature. Furthermore, the mass-radius relation and several other properties closely related to the neutron star crust are studied by using the MDI interaction. It is found that the newly constrained \rho_tand and P_ttogetherwiththeearlierestimateof together with the earlier estimate of \Delta I/I>0.014forthecrustalfractionofthemomentofinertiaoftheVelapulsarimposeastringentconstraintofR>=4.7+4.0M/Msunkmfortheradius for the crustal fraction of the moment of inertia of the Vela pulsar impose a stringent constraint of R>= 4.7+4.0M/M_sun km for the radius Randmass and mass M$ of neutron stars.Comment: 55 pages, 20 figures, 2 tables, new results and discussions added, accepted version to appear in Ap
    • …
    corecore