1,290 research outputs found
Temperature effects on the nuclear symmetry energy and symmetry free energy with an isospin and momentum dependent interaction
Within a self-consistent thermal model using an isospin and momentum
dependent interaction (MDI) constrained by the isospin diffusion data in
heavy-ion collisions, we investigate the temperature dependence of the symmetry
energy and symmetry free energy for hot,
isospin asymmetric nuclear matter. It is shown that the symmetry energy
generally decreases with increasing temperature while the
symmetry free energy exhibits opposite temperature
dependence. The decrement of the symmetry energy with temperature is
essentially due to the decrement of the potential energy part of the symmetry
energy with temperature. The difference between the symmetry energy and
symmetry free energy is found to be quite small around the saturation density
of nuclear matter. While at very low densities, they differ significantly from
each other. In comparison with the experimental data of temperature dependent
symmetry energy extracted from the isotopic scaling analysis of intermediate
mass fragments (IMF's) in heavy-ion collisions, the resulting density and
temperature dependent symmetry energy is then used to
estimate the average freeze-out density of the IMF's.used to estimate the
average freeze-out density of the IMF's.Comment: 9 pages, 7 figures, 1 figure added to show the temperature dependence
of the potential and kinetic parts of the symmetry energy. Revised version to
appear in PR
Efficient Volumetric Method of Moments for Modeling Plasmonic Thin-Film Solar Cells with Periodic Structures
Metallic nanoparticles (NPs) support localized surface plasmon resonances
(LSPRs), which enable to concentrate sunlight at the active layer of solar
cells. However, full-wave modeling of the plasmonic solar cells faces great
challenges in terms of huge computational workload and bad matrix condition. It
is tremendously difficult to accurately and efficiently simulate near-field
multiple scattering effects from plasmonic NPs embedded into solar cells. In
this work, a preconditioned volume integral equation (VIE) is proposed to model
plasmonic organic solar cells (OSCs). The diagonal block preconditioner is
applied to different material domains of the device structure. As a result,
better convergence and higher computing efficiency are achieved. Moreover, the
calculation is further accelerated by two-dimensional periodic Green's
functions. Using the proposed method, the dependences of optical absorption on
the wavelengths and incident angles are investigated. Angular responses of the
plasmonic OSCs show the super-Lambertian absorption on the plasmon resonance
but near-Lambertian absorption off the plasmon resonance. The volumetric method
of moments and explored physical understanding are of great help to investigate
the optical responses of OSCs.Comment: 11 pages, 6 figure
Sound absorption properties of polyurethane-based warp-knitted spacer fabric composites
Sound absorption properties of polyurethane-based warp-knitted spacer fabric composites (PWSF) have been studied. The warp-knitted spacer fabrics (WSF) are produced on a double-needle bar warp knitting machine using different structural parameters including inclination angle of spacer yarn, thickness, spacer yarnβs diameter and surface layer structure. The composites are fabricated based on a flexible polyurethane foam. Accordingly, the acoustical behaviors of composites are evaluated properly by using two-microphone transfer function techniques in impedance tube. The findings reveal that the composites possess excellent sound absorption properties and their sound absorbability can be tailored to meet the specificend-use requirements by varying the fabric structural parameters
Differential isospin-fractionation in dilute asymmetric nuclear matter
The differential isospin-fractionation (IsoF) during the liquid-gas phase
transition in dilute asymmetric nuclear matter is studied as a function of
nucleon momentum. Within a self-consistent thermal model it is shown that the
neutron/proton ratio of the gas phase becomes {\it smaller} than that of the
liquid phase for energetic nucleons, although the gas phase is overall more
neutron-rich. Clear indications of the differential IsoF consistent with the
thermal model predictions are demonstrated within a transport model for
heavy-ion reactions. Future comparisons with experimental data will allow us to
extract critical information about the momentum dependence of the isovector
strong interaction.Comment: Rapid Communication, Phys. Rev. C (2007) in pres
Dual-envelop-oriented moving horizon path tracking control for fully automated vehicles
A novel description of dual-envelop-oriented path tracking issue is presented for fully automated vehicles which considers shape of vehicle as inner-envelop (I-ENV) and feasible road region as outer-envelop (O-ENV). Then implicit linear model predictive control (MPC) approach is proposed to design moving horizon path tracking controller in order to solve the situations that may cause collision and run out of road in traditional path tracking method. The proposed MPC controller employed varied sample time and varied prediction horizon and could deal with modelling error effectively. In order to specify the effectiveness of the proposed dual-envelop-oriented moving horizon path tracking method, veDYNA-Simulink joint simulations in different running conditions are carried out. The results illustrate that the proposed path tracking scheme performs well in tracking the desired path, and could increase path tracking precision effectively
NUCLEAR CONSTRAINTS ON PROPERTIES OF NEUTRON STAR CRUSTS
The transition density and pressure at the inner edge
separating the liquid core from the solid crust of neutron stars are
systematically studied using a modified Gogny (MDI) and 47 popular Skyrme
interactions within well established dynamical and thermodynamical methods. It
is shown that the widely used parabolic approximation to the full Equation of
State (EOS) of isospin asymmetric nuclear matter may lead to huge errors in
estimating the \rho_{t} and P_{t}, especially for stiffer symmetry energy
functionals . The \rho_{t} and P_{t} decrease roughly linearly
with the increasing slope parameter of the using the full
EOS within both methods. It is also shown that the thickness, fractional mass
and moment of inertia of neutron star crust are all very sensitive to the
parameter through the . Moreover, it is shown that the
constrained in the same sub-saturation density range as the
neutron star crust by the isospin diffusion data in heavy-ion collisions at
intermediate energies limits the transition density and pressure to 0.040
fm^-3}< \rho_{t} < 0.065 fm^-3 and 0.01 MeV/fm^3 < P_{t} < 0.26\rho_tP_t\Delta I/I>0.014RM$ of neutron stars.Comment: 55 pages, 20 figures, 2 tables, new results and discussions added,
accepted version to appear in Ap
- β¦