9,447 research outputs found

    Economic burden of adverse drug reactions and potential for pharmacogenomic testing in Singaporean adults.

    Get PDF
    Adverse drug reactions (ADRs) contribute to hospitalization but data on its economic burden is scant. Pre-emptive pharmacogenetic (PGx) testing can potentially reduce ADRs and its associated costs. The objectives of this study were to quantify the economic burden of ADRs and to estimate the breakeven cost of pre-emptive PGx testing in Singapore. We collected itemized costs for 1000 random non-elective hospitalizations of adults admitted to a tertiary-care general hospital in Singapore. The presence of ADRs at admission and their clinical characteristics were reported previously. The economic burden of ADRs was assessed from two perspectives: (1) Total cost and (2) incremental costs. The breakeven cost of PGx testing was estimated by dividing avoidable hospitalization costs for ADRs due to selected drugs by the number of patients taking those drugs. The total cost of 81 admissions caused by ADRs was US570,404.Costsweresignificantlyhigherforbleeding/elevatedinternationalnormalizedratio(US570,404. Costs were significantly higher for bleeding/elevated international normalized ratio (US9906 vs. US2251,p=6.58×103)comparedtootherADRs,andfordrugsactingonthebloodcoagulationsystem(US2251, p = 6.58 × 10-3) compared to other ADRs, and for drugs acting on the blood coagulation system (US9884 vs. US2229,p=4.41×103)comparedtootherdrugclasses.TherewerehigherincrementallaboratorycostsduetoADRscausingorbeingpresentatadmission.TheestimatedbreakevencostofapreemptivePGxtestforpatientstakingwarfarin,clopidogrel,chemotherapeuticandneuropsychiatricdrugswasUS2229, p = 4.41 × 10-3) compared to other drug classes. There were higher incremental laboratory costs due to ADRs causing or being present at admission. The estimated breakeven cost of a pre-emptive PGx test for patients taking warfarin, clopidogrel, chemotherapeutic and neuropsychiatric drugs was US114 per patient. These results suggest that future studies designed to directly measure the clinical and cost impact of a pre-emptive genotyping program will help inform clinical practice and health policy decisions

    Proteomic analysis of rhein-induced cyt: ER stress mediates cell death in breast cancer cells

    Get PDF
    Rhein is a natural product purified from herbal plants such as Rheum palmatum, which has been shown to have anti-angiogenesis and anti-tumor metastasis properties. However, the biological effects of rhein on the behavior of breast cancers are not completely elucidated. To evaluate whether rhein might be useful in the treatment of breast cancer and its cytotoxic mechanism, we analyzed the impact of rhein treatment on differential protein expression as well as redox regulation in a non-invasive breast cancer cell line, MCF-7, and an invasive breast cancer cell line, MDA-MB-231, using lysine- and cysteine-labeling two-dimensional difference gel electrophoresis (2D-DIGE) combined with MALDI-TOF/TOF mass spectrometry. This proteomic study revealed that 73 proteins were significantly changed in protein expression; while 9 proteins were significantly altered in thiol reactivity in both MCF-7 and MDA-MB-231 cells. The results also demonstrated that rhein-induced cytotoxicity in breast cancer cells mostly involves dysregulation of cytoskeleton regulation, protein folding, the glycolysis pathway and transcription control. A further study also indicated that rhein promotes misfolding of cellular proteins as well as unbalancing of the cellular redox status leading to ER-stress. Our work shows that the current proteomic strategy offers a high-through-put platform to study the molecular mechanisms of rhein-induced cytotoxicity in breast cancer cells. The identified differentially expressed proteins might be further evaluated as potential targets in breast cancer therapy

    Towards the AlexNet Moment for Homomorphic Encryption: HCNN, theFirst Homomorphic CNN on Encrypted Data with GPUs

    Get PDF
    Deep Learning as a Service (DLaaS) stands as a promising solution for cloud-based inference applications. In this setting, the cloud has a pre-learned model whereas the user has samples on which she wants to run the model. The biggest concern with DLaaS is user privacy if the input samples are sensitive data. We provide here an efficient privacy-preserving system by employing high-end technologies such as Fully Homomorphic Encryption (FHE), Convolutional Neural Networks (CNNs) and Graphics Processing Units (GPUs). FHE, with its widely-known feature of computing on encrypted data, empowers a wide range of privacy-concerned applications. This comes at high cost as it requires enormous computing power. In this paper, we show how to accelerate the performance of running CNNs on encrypted data with GPUs. We evaluated two CNNs to classify homomorphically the MNIST and CIFAR-10 datasets. Our solution achieved a sufficient security level (> 80 bit) and reasonable classification accuracy (99%) and (77.55%) for MNIST and CIFAR-10, respectively. In terms of latency, we could classify an image in 5.16 seconds and 304.43 seconds for MNIST and CIFAR-10, respectively. Our system can also classify a batch of images (> 8,000) without extra overhead

    Gold-catalyzed cycloisomerization and Diels-Alder reaction of 1,4,9-Dienyne Esters to 3 a,6-Methanoisoindole Esters with pro-inflammatory cytokine antagonist activity

    Get PDF
    A synthetic method to prepare 3a,6-methanoisoindole esters efficiently by gold(I)-catalyzed tandem 1,2-acyloxy migration/Nazarov cyclization followed by Diels–Alder reaction of 1,4,9-dienyne esters is described. We also report the ability of one example to inhibit binding of tumor necrosis factor-α (TNF-α) to the tumor necrosis factor receptor 1 (TNFR1) site and TNF-α-induced nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) activation in cell at a half-maximal inhibitory concentration (IC50) value of 6.6 μM. Along with this is a study showing the isoindolyl derivative to exhibit low toxicity toward human hepatocellular liver carcinoma (HepG2) cells and its possible mode of activity based on molecular modeling analysis

    Crystal Structure of the Pre-fusion Nipah Virus Fusion Glycoprotein Reveals a Novel Hexamer-of-Trimers Assembly.

    Get PDF
    Nipah virus (NiV) is a paramyxovirus that infects host cells through the coordinated efforts of two envelope glycoproteins. The G glycoprotein attaches to cell receptors, triggering the fusion (F) glycoprotein to execute membrane fusion. Here we report the first crystal structure of the pre-fusion form of the NiV-F glycoprotein ectodomain. Interestingly this structure also revealed a hexamer-of-trimers encircling a central axis. Electron tomography of Nipah virus-like particles supported the hexameric pre-fusion model, and biochemical analyses supported the hexamer-of-trimers F assembly in solution. Importantly, structure-assisted site-directed mutagenesis of the interfaces between F trimers highlighted the functional relevance of the hexameric assembly. Shown here, in both cell-cell fusion and virus-cell fusion systems, our results suggested that this hexamer-of-trimers assembly was important during fusion pore formation. We propose that this assembly would stabilize the pre-fusion F conformation prior to cell attachment and facilitate the coordinated transition to a post-fusion conformation of all six F trimers upon triggering of a single trimer. Together, our data reveal a novel and functional pre-fusion architecture of a paramyxoviral fusion glycoprotein
    corecore