2,562 research outputs found

    Semileptonic decays of BcB_c meson to S-wave charmonium states in the perturbative QCD approach

    Get PDF
    Inspired by the recent measurement of the ratio of BcB_c branching fractions to J/ψπ+J/\psi \pi^+ and J/ψμ+νμJ/\psi \mu^+\nu_{\mu} final states at the LHCb detector, we study the semileptonic decays of BcB_c meson to the S-wave ground and radially excited 2S and 3S charmonium states with the perturbative QCD approach. After evaluating the form factors for the transitions BcP,VB_c\rightarrow P,V, where PP and VV denote pseudoscalar and vector S-wave charmonia, respectively, we calculate the branching ratios for all these semileptonic decays. The theoretical uncertainty of hadronic input parameters are reduced by utilizing the light-cone wave function for BcB_c meson. It is found that the predicted branching ratios range from 10610^{-6} up to 10210^{-2} and could be measured by the future LHCb experiment. Our prediction for the ratio of branching fractions BR(Bc+J/Ψπ+)BR(Bc+J/Ψμ+νμ)\frac{\mathcal {BR}(B_c^+\rightarrow J/\Psi \pi^+)}{\mathcal {BR}(B_c^+\rightarrow J/\Psi \mu^+\nu_{\mu})} is in good agreement with the data. For BcVlνlB_c\rightarrow V l \nu_l decays, the relative contributions of the longitudinal and transverse polarization are discussed in different momentum transfer squared regions. These predictions will be tested on the ongoing and forthcoming experiments.Comment: 12 pages, 3 figures, 5 table

    Negative Binomial States of the Radiation Field and their Excitations are Nonlinear Coherent States

    Full text link
    We show that the well-known negative binomial states of the radiation field and their excitations are nonlinear coherent states. Excited nonlinear coherent state are still nonlinear coherent states with different nonlinear functions. We finally give exponential form of the nonlinear coherent states and remark that the binomial states are not nonlinear coherent states.Comment: 10 pages, no figure

    Chemical heat storage for saving the exhaust gas energy in a spark ignition engine

    Full text link
    This study was aimed to develop a chemical heat storage system using magnesium hydroxide (Mg(OH)2) and its dehydration and hydration reactions to recover the energy wasted in internal combustion engines (IC engine). The thermal energy of exhaust gas will be stored in the dehydration of Mg(OH)2 to become MgO and H2O, and to release in the hydration of MgO. Experiments were conducted on a 6-cylinder spark ignition engine to estimate the amount of energy loss in the exhaust gas and the reactor efficiency in the dehydration process. The stored heat used to heat fresh air from the ambient temperature to more convenient temperature. Results of the preliminary investigation show that the proposed chemical heat storage system is feasible to recover approximately 5.8 % of the heat loss and the temperature of the air is from 275.5 K to 305.4 K (with the ambient temperature is from 253 K to 283 K and the water vapor pressure is 47kPa)

    3-(4-Carb­oxy-5-carboxyl­ato-1H-imidazol-2-yl)pyridin-1-ium monohydrate

    Get PDF
    In the zwitterionic mol­ecule of the title compound, C10H7N3O4·H2O, one carboxyl group is deprotonated and the pyridine N atom is protonated. The pyridinium and imidazole rings form a dihedral angle of 5.23 (1)°. An intramolecular O—H⋯O hydrogen bond occurs. In the crystal, inter­molecular N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds link the zwitterions and water mol­ecules into sheets parallel to (102)
    corecore