360 research outputs found

    A Dynamic Information-Based Parking Guidance for Megacities considering Both Public and Private Parking

    Get PDF
    The constantly increasing number of cars in the megacities is causing severe parking problems. To resolve this problem, many cities adopt parking guidance system as a part of intelligent transportation system (ITS). However, the current parking guidance system stays in its infant stage since the obtainable information is limited. To enhance parking management in the megacity and to provide better parking guidance to drivers, this study introduces an intelligent parking guidance system and proposes a new methodology to operate it. The introduced system considers both public parking and private parking so that it is designed to maximize the use of spatial resources of the city. The proposed methodology is based on the dynamic information related parking in the city and suggests the best parking space to each driver. To do this, two kinds of utility functions which assess parking spaces are developed. Using the proposed methodology, different types of parking management policies are tested through the simulation. According to the experimental test, it is shown that the centrally managed parking guidance can give better results than individually preferred parking guidance. The simulation test proves that both a driver???s benefits and parking management of a city from various points of view can be improved by using the proposed methodology

    Clinical implications of correlation between peripheral eosinophil count and serum levels of IL-5 and tryptase in acute eosinophilic pneumonia

    Get PDF
    SummaryBackgroundThe peripheral eosinophil count (PEC) tends to increase during the course of acute eosinophilic pneumonia (AEP), and an initially elevated PEC is associated with milder disease. However, there is a lack of data regarding these phenomena and inflammatory process of AEP.MethodsWe prospectively evaluated serial changes in serum interleukin (IL)-5 levels and the correlation between the initial level of IL-5 and the PEC to investigate whether the initial PEC indicates a resolving state of inflammation. We also evaluated serum tryptase levels to investigate the possibility of involvement of mast cell activity in AEP.ResultsTwenty-one AEP patients were included, and all patients improved within 10 days after corticosteroid treatment. The median initial serum IL-5 level among all patients was 561.0 pg/mL, which decreased to zero at 10 days of follow-up (n = 15, P < 0.001). The median initial serum tryptase level (detectable in 20 of 21 patients) was 3.7 ng/mL and decreased to a median of 1.1 ng/mL at 10 days of follow-up (n = 15, P < 0.001). The initial serum IL-5 and C-reactive protein levels were positively correlated (P = 0.009, r = 0.556), and the initial serum IL-5 level was inversely correlated with the initial PEC (P = 0.004, r = −0.603).ConclusionsOur data suggest that IL-5 is an important cytokine involved in the recruitment of eosinophils from peripheral blood into the lungs, that an initially elevated PEC is associated with a resolving state of inflammation, and that mast cells are potentially involved in the inflammatory process of AEP

    Annual Wormwood Leaf Inhibits the Adipogenesis of 3T3-L1 and Obesity in High-Fat Diet-Induced Obese Rats

    Get PDF
    Annual wormwood (AW) (Artemisia annua L.) has anti-malarial, anti-bacterial, anti-oxidant, anti-tumour, and anti-inflammatory activities. In the present study, we evaluated the effects of annual wormwood leaves (AWL) on adipocyte differentiation in 3T3-L1 cells and high-fat diet (HFD)-induced obese rats. 3T3-L1 adipocytes and HFD-induced obese rats were treated with AWL, and its effect on gene expression was analyzed using RT-PCR and Western blotting experiments. Treatment with AWL effectively prevented triglyceride accumulation during adipogenesis in a dose-dependent manner. Consistently, AWL suppressed the differentiation of 3T3-L1 preadipocytes into adipocytes through the downregulation of dexamethasone, 3-isobutyl-1- methylxanthine, and insulin (DMI)-induced serine/threonine kinase protein kinase B (PKB/Akt) activation and the expression of adipogenic genes, including the CCAAT/enhancer binding protein-alpha (C/EBPalpha) and peroximal proliferator-activated receptor-gamma (PPARgamma). Moreover, the expression of adipocyte fatty acid-binding protein 4 (aP2), which is a known PPARgamma-target gene, was downregulated by AWL treatment. Oral administration of AWL extracts significantly decreased the body weight gain, adipose tissue mass, adipocyte cell size, serum triglyceride (TG), and total cholesterol (TC) levels in HFD-induced obese rats. These results provide novel insight into the molecular mechanisms underlying the anti-obesity effects of AWL that are mediated by the downregulation of the expression of major adipogenic transcription factors, C/EBPalpha and PPARgamma and Akt signalling

    Mechanisms of Oxidant Generation by Catalase

    Get PDF
    The enzyme catalase converts solar radiation into reactive oxidant species (ROS). In this study, we report that several bacterial catalases (hydroperoxidases, HP), including Escherichia coli HP-I and HP-II also generate reactive oxidants in response to ultraviolet B light (UVB). HP-I and HP-II are identical except for the presence of NADPH. We found that only one of the catalases, HPI, produces oxidants in response to UVB light, indicating a potential role for the nucleotide in ROS production. This prompts us to speculate that NADPH may act as a cofactor regulating ROS generation by mammalian catalases. Structural analysis of the NADPH domains of several mammalian catalases revealed that the nucleotide is bound in a constrained conformation and that UVB irradiation induces NADPH oxidation and positional changes. Biochemical and kinetic analysis indicate that ROS formation by the enzyme is enhanced by oxidation of the cofactor. Conformational changes following absorption of UVB light by catalase NADPH have the potential to facilitate ROS production by the enzyme

    Anti-Amyloid-β Single-Chain Antibody Brain Delivery Via AAV Reduces Amyloid Load But May Increase Cerebral Hemorrhages in an Alzheimer\u27s Disease Mouse Model

    Get PDF
    Accumulation of amyloid-β protein (Aβ) in the brain is thought to be a causal event in Alzheimer\u27s disease (AD). Immunotherapy targeting Aβ holds great promise for reducing Aβ in the brain. Here, we evaluated the efficacy and safety of anti-Aβ single-chain antibody (scFv59) delivery via recombinant adeno-associated virus (rAAV) on reducing Aβ deposits in an AD mouse model (TgAβPPswe/PS1dE9). First, delivery of scFv59 to the brain was optimized by injecting rAAV serotypes 1, 2, and 5 into the right lateral ventricle. Symmetrical high expression of scFv59 was found throughout the hippocampus and partly in the neocortex in both hemispheres via rAAV1 or rAAV5, while scFv59 expression via rAAV2 was mostly limited to one hemisphere. rAAV1, however, induced apoptosis and microglial activation but rAAV5 did not. Therefore, rAAV5 was selected for therapeutic scFv59 delivery in TgAβPPswe/PS1dE9 mice. rAAV5 was similarly injected into the ventricle of 10-month-old TgAβPPswe/PS1dE9 mice and 5 months later its efficacy and safety were evaluated. Immunoreactive Aβ deposits reduced in the hippocampus. Aβ42 levels in cerebrospinal fluid (CSF) tended to increase and the Aβ40 : 42 ratio decreased in CSF, suggesting that Aβ42 was relocated from the parenchyma to CSF. Hemorrhages associated with a focal increase in blood vessel amyloid were found in the brain. While immunotherapy has great potential for clearing cerebral Aβ, caution for cerebrovascular effects should be exercised when rAAV-mediated anti-Aβ immunotherapy is applied

    Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aβ deposits in the brains of patients with Alzheimer's disease (AD) are closely associated with innate immune responses such as activated microglia and increased cytokines. Accumulating evidence supports the hypothesis that innate immune/inflammatory responses play a pivotal role in the pathogenesis of AD: either beneficial or harmful effects on the AD progression. The molecular mechanisms by which the innate immune system modulates the AD progression are not well understood. Toll-like receptors (TLRs) are first-line molecules for initiating the innate immune responses. When activated through TLR signaling, microglia respond to pathogens and damaged host cells by secreting chemokines and cytokines and express the co-stimulatory molecules needed for protective immune responses to pathogens and efficient clearance of damaged tissues. We previously demonstrated that an AD mouse model homozygous for a destructive mutation of TLR4 has increases in diffuse and fibrillar Aβ deposits as well as buffer-soluble and insoluble Aβ in the brain as compared with a TLR4 wild-type AD mouse model. Here, we investigated the roles of TLR4 in Aβ-induced upregulation of cytokines and chemokines, Aβ-induced activation of microglia and astrocytes and Aβ-induced immigration of leukocytes.</p> <p>Methods</p> <p>Using the same model, levels of cytokines and chemokines in the brain were determined by multiplex cytokine/chemokine array. Activation of microglia and astrocytes and immigration of leukocytes were determined by immunoblotting and immunohistochemistry followed by densitometry and morphometry, respectively.</p> <p>Results</p> <p>Levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-10 and IL-17 in the brains of TLR4 wild-type AD mice were significantly higher than those in TLR4 wild-type non-transgenic littermates. Such increases in cytokines were not found in TLR4 mutant AD mice as compared with TLR4 mutant non-transgenic littermates. Although expression levels of CD11b (a microglia marker) and GFAP (a reactive astrocyte marker) in the brains of TLR4 mutant AD mice were higher than those in TLR4 wild type AD mice, no difference was found in levels of CD45 (common leukocyte antigen).</p> <p>Conclusion</p> <p>This is the first demonstration of TLR4-dependent upregulation of cytokines in an AD mouse model. Our results suggest that TLR4 signaling is involved in AD progression and that TLR4 signaling can be a new therapeutic target for AD.</p
    corecore