3,836 research outputs found

    Some integral inequalities on time scales

    Full text link
    In this paper, some new integral inequalities on time scales are presented by using elementarily analytic methods in calculus of time scales.Comment: 8 page

    Kondo effect of an adatom in graphene and its scanning tunneling spectroscopy

    Get PDF
    We study the Kondo effect of a single magnetic adatom on the surface of graphene. It was shown that the unique linear dispersion relation near the Dirac points in graphene makes it more easy to form the local magnetic moment, which simply means that the Kondo resonance can be observed in a more wider parameter region than in the metallic host. The result indicates that the Kondo resonance indeed can form ranged from the Kondo regime, to the mixed valence, even to the empty orbital regime. While the Kondo resonance displays as a sharp peak in the first regime, it has a peak-dip structure and/or an anti-resonance in the remaining two regimes, which result from the Fano resonance due to the significant background leaded by dramatically broadening of the impurity level in graphene. We also study the scanning tunneling microscopy (STM) spectra of the adatom and they show obvious particle-hole asymmetry when the chemical potential is tuned by the gate voltages applied to the graphene. Finally, we explore the influence of the direct tunneling channel between the STM tip and the graphene on the Kondo resonance and find that the lineshape of the Kondo resonance is unaffected, which can be attributed to unusual large asymmetry factor in graphene. Our study indicates that the graphene is an ideal platform to study systematically the Kondo physics and these results are useful to further stimulate the relevant experimental studies on the system.Comment: 8 pages, 5 figure

    A novel heptasegmented positive-sense single-stranded RNA virus from the phytopathogenic fungus colletotrichum fructicola

    Get PDF
    In this study, a novel positive-sense single-stranded RNA (+ssRNA) mycovirus, tentatively named Colletotrichum fructicola RNA virus 1 (CfRV1), was identified in the phytopathogenic fungus Colletotrichum fructicola. CfRV1 has seven genomic components, encoding seven proteins from open reading frames (ORFs) flanked by highly conserved untranslated regions (UTRs). Proteins encoded by ORFs 1, 2, 3, 5, and 6 are more similar to the putative RNA-dependent RNA polymerase (RdRp), hypothetical protein (P2), methyltransferase, and two hypothetical proteins of Hadaka virus 1 (HadV1), a capsidless 10- or 11-segmented +ssRNA virus, while proteins encoded by ORFs 4 and 7 showed no detectable similarity to any known proteins. Notably, proteins encoded by ORFs 1 to 3 also share considerably high similarity with the corresponding proteins of polymycoviruses. Phylogenetic analysis conducted based on the amino acid sequence of CfRV1 RdRp and related viruses placed CfRV1 and HadV1 together in the same clade, close to polymycoviruses and astroviruses. CfRV1-infected C. fructicola strains demonstrate a moderately attenuated growth rate and virulence compared to uninfected isolates. CfRV1 is capsidless and potentially encapsulated in vesicles inside fungal cells, as revealed by transmission electron microscopy. CfRV1 and HadV1 are +ssRNA mycoviruses closely related to polymycoviruses and astroviruses, represent a new linkage between +ssRNA viruses and the intermediate double-stranded RNA (dsRNA) polymycoviruses, and expand our understanding of virus diversity, taxonomy, evolution, and biological traits. IMPORTANCE A scenario proposing that dsRNA viruses evolved from +ssRNA viruses is still considered controversial due to intergroup knowledge gaps in virus diversity. Recently, polymycoviruses and hadakaviruses were found as intermediate dsRNA and +ssRNA stages, respectively, between +ssRNA and dsRNA viruses. Here, we identified a novel +ssRNA mycovirus, Colletotrichum fructicola RNA virus 1 (CfRV1), isolated from Colletotrichum fructicola in China. CfRV1 is phylogenetically related to the 10- or 11-segmented Hadaka virus 1 (HadV1) but consists of only seven genomic segments encoding two novel proteins. CfRV1 is naked and may be encapsulated in vesicles inside fungal cells, representing a potential novel lifestyle for multisegmented RNA viruses. CfRV1 and HadV1 are intermediate +ssRNA mycoviruses in the linkage between +ssRNA viruses and the intermediate dsRNA polymycoviruses and expand our understanding of virus diversity, taxonomy, and evolution

    High capacity data hiding scheme based on (7, 4) Hamming code

    Get PDF

    Fe-oxide mineralogy of the Jiujiang red earth sediments and implications for Quaternary climate change, southern China

    Get PDF
    Diffuse reflectance spectrophotometry (DRS) is a new, fast, and reliable method to characterize Fe-oxides in soils. The Fe-oxide mineralogy of the Jiujiang red earth sediments was investigated using DRS to investigate the climate evolution of southern China since the mid-Pleistocene. The DRS results show that hematite/(hematite + goethite) ratios [Hm/(Hm + Gt)] exhibit an upward decreasing trend within the Jiujiang section, suggesting a gradual climate change from warm and humid in the middle Pleistocene to cooler and drier in the late Pleistocene. Upsection trends toward higher (orthoclase + plagioclase)/quartz ratios [(Or + Pl)/Q] and magnetic susceptibility values (χlf) support this inference, which accords with global climate trends at that time. However, higher-frequency climatic subcycles observed in loess sections of northern China are not evident in the Jiujiang records, indicating a relatively lower climate sensitivity of the red earth sediments in southern China.Ke Yin, Hanlie Hong, Thomas J. Algeo, Gordon Jock Churchman, Zhaohui Li, Zongmin Zhu, Qian Fang, Lulu Zhao, Chaowen Wang, Kaipeng Ji, Weidong Lei, Zhenggang Dua

    Janus monolayers of transition metal dichalcogenides.

    Get PDF
    Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements

    Stretched Strings in Noncommutative Field Theory

    Get PDF
    Motivated by recent discussions of IR/UV mixing in noncommutative field theories, we perform a detailed analysis of the non-planar amplitudes of the bosonic open string in the presence of an external B-field at the one-loop level. We carefully isolate, at the string theory level, the contribution which is responsible for the IR/UV behavior in the field theory limit. We show that it is a pure open string effect by deriving it from the factorization of the one-loop amplitude into the disk amplitudes of intermediate open string insertions. We suggest that it is natural to understand IR/UV mixing as the creation of intermediate ``stretched strings''.Comment: 20 pages AMSLaTeX using JHEP.cls, 6 eps figures. Typos corrected and references adde

    Spontaneous Mirror Parity Violation, Common Origin of Matter and Dark Matter, and the LHC Signatures

    Full text link
    Existence of a mirror world in the universe is a fundamental way to restore the observed parity violation in weak interactions and provides the lightest mirror nucleon as a unique GeV-scale dark matter particle candidate. The visible and mirror worlds share the same spacetime of the universe and are connected by a unique space-inversion symmetry -- the mirror parity (P). We conjecture that the mirror parity is respected by the fundamental interaction Lagrangian, and study its spontaneous breaking from minimizing the Higgs vacuum potential. The domain wall problem is resolved by a unique soft breaking linear-term from the P-odd weak-singlet Higgs field. We also derive constraint from the Big-Bang nucleosynthesis. We then analyze the neutrino seesaw for both visible and mirror worlds, and demonstrate that the desired amounts of visible matter and mirror dark matter in the universe arise from a common origin of CP violation in the neutrino sector via leptogenesis. We derive the Higgs mass-spectrum and Higgs couplings with gauge bosons and fermions. We show their consistency with the direct Higgs searches and the indirect precision constraints. We further study the distinctive signatures of the predicted non-standard Higgs bosons at the LHC. Finally, we analyze the direct detections of GeV-scale mirror dark matter by TEXONO and CDEX experiments.Comment: 55pp. PRD final version. Only minor refinements (including to comment on the latest LHC Higgs searches in Sec.5 and estimate abundances of mirror dark matter particles in Sec.6); more references adde
    • …
    corecore