21 research outputs found

    Energy Transport State Resolved Raman for Probing Interface Energy Transport and Hot Carrier Diffusion in Few-Layered MoS<sub>2</sub>

    No full text
    Quantitative understanding of 2D atomic layer interface thermal resistance (<i>R</i>) based on Raman characterization is significantly hindered by unknown sample-to-sample optical properties variation, interface-induced optical interference, off-normal laser irradiation, and large thermal-Raman calibration uncertainties. In this work, we develop a novel energy transport state resolved Raman (ET-Raman) to resolve these critical issues, and also consider the hot carrier diffusion, which is crucial but has been rarely considered during interface energy transport study. In ET-Raman, by constructing two steady heat conduction states with different laser spot sizes, we differentiate the effect of <i>R</i> and hot carrier diffusion coefficient (<i>D</i>). By constructing an extreme state of zero/negligible heat conduction using a picosecond laser, we differentiate the effect of <i>R</i> and material’s specific heat. In the end, we precisely determine <i>R</i> and <i>D</i> without need of laser absorption and temperature rise of the 2D atomic layer. Seven MoS<sub>2</sub> samples (6.6–17.4 nm) on c-Si are characterized using ET-Raman. Their <i>D</i> is measured in the order of 1.0 cm<sup>2</sup>/s, increasing against the MoS<sub>2</sub> thickness. This is attributed to the weaker in-plane electron–phonon interaction in thicker samples, enhanced screening of long-range disorder, and improved charge impurities mitigation. <i>R</i> is determined as 1.22–1.87 × 10<sup>–7</sup> K·m<sup>2</sup>/W, decreasing with the MoS<sub>2</sub> thickness. This is explained by the interface spacing variation due to thermal expansion mismatch between MoS<sub>2</sub> and Si, and increased stiffness of thicker MoS<sub>2</sub>. The local interface spacing is uncovered by comparing the theoretical Raman intensity and experimental data, and is correlated with the observed <i>R</i> variation

    An Approach for the Sphere-to-Rod Transition of Multiblock Copolymer Micelles

    No full text
    The shape of polymer micelles is important for pharmaceutical applications as drug delivery. In this article, an approach inducing sphere-to-rod transition of multiblock polyurethane micelles has been developed through introducing a second hydrophilic component phosphatidylcholine group into the polymer chains. Time-resolved dynamic light scattering (DLS), combined with transmission electron microscopy (TEM), was employed to investigate the kinetics of morphology transition. Moreover, a dissipative particle dynamics (DPD) simulation method was applied to study the mechanism of sphere-to-rod transition. These experimental and simulation studies revealed that the hydrophilic phosphatidylcholine groups can create defects on the surfaces of spherical polyurethane micelles, thus, making positive contribution to adhesive collisions and leading to the fusion of spherical micelles into rod-like micelles. This finding provides new insight into the origins of rod-like polymer micelles, which is valuable for the design and preparation of novel polymeric drug carriers with tailored properties

    Multilayer Choline Phosphate Molecule Modified Surface with Enhanced Cell Adhesion but Resistance to Protein Adsorption

    No full text
    Choline phosphate (CP), which is a new zwitterionic molecule, and has the reverse order of phosphate choline (PC) and could bind to the cell membrane though the unique CP–PC interaction. Here we modified a glass surface with multilayer CP molecules using surface-initiated atom-transfer radical polymerization (SI-ATRP) and the ring-opening method. Polymeric brushes of (di­methyl­amino)­ethyl meth­acrylate (DMAEMA) were synthesized by SI-ATRP from the glass surface. Then the grafted PDMAEMA brushes were used to introduce CP groups to fabricate the multilayer CP molecule modified surface. The protein adsorption experiment and cell culture test were used to evaluate the biocompatibility of the modified surfaces by using human umbilical veinendothelial cells (HUVECs). The protein adsorption results demonstrated that the multilayer CP molecule decorated surface could prevent the adsorption of fibrinogen and serum protein. The adhesion and proliferation of cells were improved significantly on the multilayer CP molecule modified surface. Therefore, the biocompatibility of the material surface could be improved by the modified multilayer CP molecule, which exhibits great potential for biomedical applications, e.g., scaffolds in tissue engineering

    Cell Internalizable and Intracellularly Degradable Cationic Polyurethane Micelles as a Potential Platform for Efficient Imaging and Drug Delivery

    No full text
    A cell internalizable and intracellularly degradable micellar system, assembled from multiblock polyurethanes bearing cell-penetrating gemini quaternary ammonium pendent groups in the side chain and redox-responsive disulfide linkages throughout the backbone, was developed for potential magnetic resonance imaging (MRI) and drug delivery. The nanocarrier is featured as a typical “cleavable core–internalizable shell–protective corona” architecture, which exhibits small size, positive surface charge, high loading capacity, and reduction-triggered destabilization. Furthermore, it can rapidly enter tumor cells and release its cargo in response to an intracellular level of glutathione, resulting in enhanced drug efficacy <i>in vitro</i>. The magnetic micelles loaded with superparamagnetic iron oxide (SPIO) nanoparticles demonstrate excellent MRI contrast enhancement, with <i>T</i><sub>2</sub> relaxivity found to be affected by the morphology of SPIO-clustering inside the micelle core. The multifunctional carrier with good cytocompatibility and nontoxic degradation products can serve as a promising theranostic candidate for efficient intracellular delivery of anticancer drugs and real-time monitoring of therapeutic effect

    Table_2_Normal distribution of H3K9me3 occupancy co-mediated by histone methyltransferase BcDIM5 and histone deacetylase BcHda1 maintains stable ABA synthesis in Botrytis cinerea TB-31.XLSX

    No full text
    Abscisic acid (ABA) is a conserved and important “sesquiterpene signaling molecule” widely distributed in different organisms with unique biological functions. ABA coordinates reciprocity and competition between microorganisms and their hosts. In addition, ABA also regulates immune and stress responses in plants and animals. Therefore, ABA has a wide range of applications in agriculture, medicine and related fields. The plant pathogenic ascomycete B. cinerea has been extensively studied as a model strain for ABA production. Nevertheless, there is a relative dearth of research regarding the regulatory mechanism governing ABA biosynthesis in B. cinerea. Here, we discovered that H3K9 methyltransferase BcDIM5 is physically associated with the H3K14 deacetylase BcHda1. Deletion of Bcdim5 and Bchda1 in the high ABA-producing B. cinerea TB-31 led to severe impairment of ABA synthesis. The combined analysis of RNA-seq and ChIP-seq has revealed that the absence of BcDIM5 and BcHda1 has resulted in significant global deficiencies in the normal distribution and level of H3K9me3 modification. In addition, we found that the cause of the decreased ABA production in the ΔBcdim5 and ΔBchda1 mutants was due to cluster gene repression caused by the emergence of hyper-H3K9me3 in the ABA gene cluster. We concluded that the ABA gene cluster is co-regulated by BcDIM5 and BcHda1, which are essential for the normal distribution of the B. cinerea TB-31 ABA gene cluster H3K9me3. This work expands our understanding of the complex regulatory network of ABA biosynthesis and provides a theoretical basis for genetic improvement of high-yielding ABA strains.</p

    Antibacterial and Biocompatible Cross-Linked Waterborne Polyurethanes Containing Gemini Quaternary Ammonium Salts

    No full text
    A cross-linked waterborne polyurethane (CPTMGPU) with long-term stability was developed from poly­(ethylene glycol) (PEG), polyoxytetramethylene glycol (PTMG), isophorone diisocyanate (IPDI), l-lysine, and its derivative diamine consisting of gemini quaternary ammonium salt (GQAS), using ethylene glycol diglycidyl ether (EGDE) as a cross-linker. Weight loss test, X-ray photoelectron spectroscopy (XPS) measurements, and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) were performed to prove the surface structure and stability of these CPTMGPU films. Furthermore, the GQAS-bearing CPTMGPUs show repeatable contact-active antibacterial efficacy against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) bacteria and do not show any inhibition effect against fibroblasts in vitro. After subcutaneous implantation in rats, the CPTMGPU films manifest good biocompatibility in vivo, despite the presence of a typical foreign body reaction toward surrounding tissues and mild systematic inflammation reaction that could be eliminated after a short implantation period, as demonstrated by histology and immunohistochemistry combined with interleukin (IL)-1β, IL-4, IL-6, IL-10, and TNF-α analysis though enzyme-linked immunosorbent assay (ELISA) and real-time quantitative polymerase chain reaction (qRT-PCR). Therefore, these cross-linked waterborne polyurethanes hold great promise for antibacterial applications in vivo

    Data_Sheet_1_Normal distribution of H3K9me3 occupancy co-mediated by histone methyltransferase BcDIM5 and histone deacetylase BcHda1 maintains stable ABA synthesis in Botrytis cinerea TB-31.pdf

    No full text
    Abscisic acid (ABA) is a conserved and important “sesquiterpene signaling molecule” widely distributed in different organisms with unique biological functions. ABA coordinates reciprocity and competition between microorganisms and their hosts. In addition, ABA also regulates immune and stress responses in plants and animals. Therefore, ABA has a wide range of applications in agriculture, medicine and related fields. The plant pathogenic ascomycete B. cinerea has been extensively studied as a model strain for ABA production. Nevertheless, there is a relative dearth of research regarding the regulatory mechanism governing ABA biosynthesis in B. cinerea. Here, we discovered that H3K9 methyltransferase BcDIM5 is physically associated with the H3K14 deacetylase BcHda1. Deletion of Bcdim5 and Bchda1 in the high ABA-producing B. cinerea TB-31 led to severe impairment of ABA synthesis. The combined analysis of RNA-seq and ChIP-seq has revealed that the absence of BcDIM5 and BcHda1 has resulted in significant global deficiencies in the normal distribution and level of H3K9me3 modification. In addition, we found that the cause of the decreased ABA production in the ΔBcdim5 and ΔBchda1 mutants was due to cluster gene repression caused by the emergence of hyper-H3K9me3 in the ABA gene cluster. We concluded that the ABA gene cluster is co-regulated by BcDIM5 and BcHda1, which are essential for the normal distribution of the B. cinerea TB-31 ABA gene cluster H3K9me3. This work expands our understanding of the complex regulatory network of ABA biosynthesis and provides a theoretical basis for genetic improvement of high-yielding ABA strains.</p

    Data_Sheet_2_Normal distribution of H3K9me3 occupancy co-mediated by histone methyltransferase BcDIM5 and histone deacetylase BcHda1 maintains stable ABA synthesis in Botrytis cinerea TB-31.ZIP

    No full text
    Abscisic acid (ABA) is a conserved and important “sesquiterpene signaling molecule” widely distributed in different organisms with unique biological functions. ABA coordinates reciprocity and competition between microorganisms and their hosts. In addition, ABA also regulates immune and stress responses in plants and animals. Therefore, ABA has a wide range of applications in agriculture, medicine and related fields. The plant pathogenic ascomycete B. cinerea has been extensively studied as a model strain for ABA production. Nevertheless, there is a relative dearth of research regarding the regulatory mechanism governing ABA biosynthesis in B. cinerea. Here, we discovered that H3K9 methyltransferase BcDIM5 is physically associated with the H3K14 deacetylase BcHda1. Deletion of Bcdim5 and Bchda1 in the high ABA-producing B. cinerea TB-31 led to severe impairment of ABA synthesis. The combined analysis of RNA-seq and ChIP-seq has revealed that the absence of BcDIM5 and BcHda1 has resulted in significant global deficiencies in the normal distribution and level of H3K9me3 modification. In addition, we found that the cause of the decreased ABA production in the ΔBcdim5 and ΔBchda1 mutants was due to cluster gene repression caused by the emergence of hyper-H3K9me3 in the ABA gene cluster. We concluded that the ABA gene cluster is co-regulated by BcDIM5 and BcHda1, which are essential for the normal distribution of the B. cinerea TB-31 ABA gene cluster H3K9me3. This work expands our understanding of the complex regulatory network of ABA biosynthesis and provides a theoretical basis for genetic improvement of high-yielding ABA strains.</p

    Data_Sheet_3_Normal distribution of H3K9me3 occupancy co-mediated by histone methyltransferase BcDIM5 and histone deacetylase BcHda1 maintains stable ABA synthesis in Botrytis cinerea TB-31.ZIP

    No full text
    Abscisic acid (ABA) is a conserved and important “sesquiterpene signaling molecule” widely distributed in different organisms with unique biological functions. ABA coordinates reciprocity and competition between microorganisms and their hosts. In addition, ABA also regulates immune and stress responses in plants and animals. Therefore, ABA has a wide range of applications in agriculture, medicine and related fields. The plant pathogenic ascomycete B. cinerea has been extensively studied as a model strain for ABA production. Nevertheless, there is a relative dearth of research regarding the regulatory mechanism governing ABA biosynthesis in B. cinerea. Here, we discovered that H3K9 methyltransferase BcDIM5 is physically associated with the H3K14 deacetylase BcHda1. Deletion of Bcdim5 and Bchda1 in the high ABA-producing B. cinerea TB-31 led to severe impairment of ABA synthesis. The combined analysis of RNA-seq and ChIP-seq has revealed that the absence of BcDIM5 and BcHda1 has resulted in significant global deficiencies in the normal distribution and level of H3K9me3 modification. In addition, we found that the cause of the decreased ABA production in the ΔBcdim5 and ΔBchda1 mutants was due to cluster gene repression caused by the emergence of hyper-H3K9me3 in the ABA gene cluster. We concluded that the ABA gene cluster is co-regulated by BcDIM5 and BcHda1, which are essential for the normal distribution of the B. cinerea TB-31 ABA gene cluster H3K9me3. This work expands our understanding of the complex regulatory network of ABA biosynthesis and provides a theoretical basis for genetic improvement of high-yielding ABA strains.</p

    MOESM2 of Aberrant monocyte responses predict and characterize dengue virus infection in individuals with severe disease

    No full text
    Additional file 2: Figure S1. (A) Plasma levels IL-18BPa and free circulating IL-18 in dengue patients at febrile and defeverscence phase. (B) Spearman correlation between IL-18 and IL-18BP among DWS and DWS+/SD. Levels of biomarkers were compared across the three patient groups and post hoc Mann–Whitney U tests were then performed for those biomarkers with a Kruskal–Wallis test P value of <0.05. A Spearman rank test was used to compare the correlation between two continuous variables. ****P < 0.0001, ***P < 0.001, **P < 0.01, and *P < 0.05
    corecore