7,814 research outputs found

    Quantizing the line element field

    Full text link
    A metric with signature (-+++) can be constructed from a metric with signature (++++) and a double-sided vector field called the line element field. Some of the classical and quantum properties of this vector field are studied.Comment: 9 page

    Conservative-dissipative approximation schemes for a generalized Kramers equation

    Get PDF
    We propose three new discrete variational schemes that capture the conservative-dissipative structure of a generalized Kramers equation. The first two schemes are single-step minimization schemes while the third one combines a streaming and a minimization step. The cost functionals in the schemes are inspired by the rate functional in the Freidlin-Wentzell theory of large deviations for the underlying stochastic system. We prove that all three schemes converge to the solution of the generalized Kramers equation

    Unexpected contraction of a zeolite framework upon isomorphous substitution of Si by Al

    Get PDF
    Isomorphous substitution of Si by Al in the framework of sodalites synthesized in ethylene glycol causes an unexpected contraction of the zeolite framework

    Synthesis of titanium-containing ZSM-48

    Get PDF
    Titanium-containing ZSM-48 is synthesized with silicon to titanium ratios of 26 or larger; changes in unit cell volume and IR data show that titanium is incorporated into framework positions

    Aluminophosphate molecular sieves comprised of hydrated triple crankshaft chains

    Get PDF
    We report the first synthesis of pure aluminophosphate hydrate H2 (AlPO4-H2) and its structure; AlPO4-H2 is constructed exclusively from a hydrated chain building unit that also builds the 18-ring VPI-5 structure and has one-dimensional channels circumscribed by highly elliptical rings consisting often oxygen atoms, implications from the existence of this building unit for the synthesis of novel aluminophosphate molecular sieves and for the synthesis of aluminosilicate and silicate analogues of AlPO4-H2 and VPI-5 are discussed

    Galactic outflows and the kinematics of damped Lyman alpha absorbers

    Get PDF
    The kinematics of damped Lyman alpha absorbers (DLAs) are difficult to reproduce in hierarchical galaxy formation models, particularly the preponderance of wide systems. We investigate DLA kinematics at z=3 using high-resolution cosmological hydrodynamical simulations that include a heuristic model for galactic outflows. Without outflows, our simulations fail to yield enough wide DLAs, as in previous studies. With outflows, predicted DLA kinematics are in much better agreement with observations. Comparing two outflow models, we find that a model based on momentum-driven wind scalings provides the best match to the observed DLA kinematic statistics of Prochaska & Wolfe. In this model, DLAs typically arise a few kpc away from galaxies that would be identified in emission. Narrow DLAs can arise from any halo and galaxy mass, but wide ones only arise in halos with mass >10^11 Mo, from either large central or small satellite galaxies. This implies that the success of this outflow model originates from being most efficient at pushing gas out from small satellite galaxies living in larger halos. This increases the cross-section for large halos relative to smaller ones, thereby yielding wider kinematics. Our simulations do not include radiative transfer effects or detailed metal tracking, and outflows are modeled heuristically, but they strongly suggest that galactic outflows are central to understanding DLA kinematics. An interesting consequence is that DLA kinematics may place constraints on the nature and efficiency of gas ejection from high-z galaxies.Comment: submitted to MNRA
    • …
    corecore