49,341 research outputs found
Assessing somatization in urologic chronic pelvic pain syndrome
BACKGROUND: This study examined the prevalence of somatization disorder in Urological Chronic Pelvic Pain Syndrome (UCPPS) and the utility of two self-report symptom screening tools for assessment of somatization in patients with UCPPS.
METHODS: The study sample included 65 patients with UCPPS who enrolled in the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Study at Washington University. Patients completed the PolySymptomatic PolySyndromic Questionnaire (PSPS-Q) (n = 64) and the Patient Health Questionnaire-15 Somatic Symptom Severity Scale (PHQ-15) (n = 50). Review of patient medical records found that only 47% (n = 30) contained sufficient documentation to assess Perley-Guze criteria for somatization disorder.
RESULTS: Few (only 6.5%) of the UCPPS sample met Perley-Guze criteria for definite somatization disorder. Perley-Guze somatization disorder was predicted by definite PSPS-Q somatization with at least 75% sensitivity and specificity. Perley-Guze somatization disorder was predicted by severe (\u3e 15) PHQ-15 threshold that had \u3e 90% sensitivity and specificity but was met by only 16% of patients. The moderate (\u3e 10) PHQ-15 threshold had higher sensitivity (100%) but lower specificity (52%) and was met by 52% of the sample.
CONCLUSIONS: The PHQ-15 is brief, but it measures symptoms constituting only one dimension of somatization. The PSPS-Q uniquely captures two conceptual dimensions inherent in the definition of somatization disorder, both number of symptoms and symptom distribution across multiple organ systems, with relevance for UCPPS as a syndrome that is not just a collection of urological symptoms but a broader syndrome with symptoms extending beyond the urological system
Modelling and control of the flame temperature distribution using probability density function shaping
This paper presents three control algorithms for the output probability density function (PDF) control of the 2D and 3D flame distribution systems. For the 2D flame distribution systems, control methods for both static and dynamic flame systems are presented, where at first the temperature distribution of the gas jet flames along the cross-section is approximated. Then the flame energy distribution (FED) is obtained as the output to be controlled by using a B-spline expansion technique. The general static output PDF control algorithm is used in the 2D static flame system, where the dynamic system consists of a static temperature model of gas jet flames and a second-order actuator. This leads to a second-order closed-loop system, where a singular state space model is used to describe the dynamics with the weights of the B-spline functions as the state variables. Finally, a predictive control algorithm is designed for such an output PDF system. For the 3D flame distribution systems, all the temperature values of the flames are firstly mapped into one temperature plane, and the shape of the temperature distribution on this plane can then be controlled by the 3D flame control method proposed in this paper. Three cases are studied for the proposed control methods and desired simulation results have been obtained
Evidence for spin-flip scattering and local moments in dilute fluorinated graphene
The issue of whether local magnetic moments can be formed by introducing
adatoms into graphene is of intense research interest because it opens the
window to fundamental studies of magnetism in graphene, as well as of its
potential spintronics applications. To investigate this question we measure, by
exploiting the well-established weak localization physics, the phase coherence
length L_phi in dilute fluorinated graphene. L_phi reveals an unusual
saturation below ~ 10 K, which cannot be explained by non-magnetic origins. The
corresponding phase breaking rate increases with decreasing carrier density and
increases with increasing fluorine density. These results provide strong
evidence for spin-flip scattering and points to the existence of adatom-induced
local magnetic moment in fluorinated graphene. Our results will stimulate
further investigations of magnetism and spintronics applications in
adatom-engineered graphene.Comment: 9 pages, 4 figures, and supplementary materials; Phys. Rev. Lett. in
pres
The C-metric as a colliding plane wave space-time
It is explicitly shown that part of the C-metric space-time inside the black
hole horizon may be interpreted as the interaction region of two colliding
plane waves with aligned linear polarization, provided the rotational
coordinate is replaced by a linear one. This is a one-parameter generalization
of the degenerate Ferrari-Ibanez solution in which the focussing singularity is
a Cauchy horizon rather than a curvature singularity.Comment: 6 pages. To appear in Classical and Quantum Gravit
The least common multiple of a sequence of products of linear polynomials
Let be the product of several linear polynomials with integer
coefficients. In this paper, we obtain the estimate: as , where is a constant depending on
.Comment: To appear in Acta Mathematica Hungaric
Radiation generated by accelerating and rotating charged black holes in (anti-)de Sitter space
Asymptotic behaviour of gravitational and electromagnetic fields of exact
type D solutions from the large Plebanski-Demianski family of black hole
spacetimes is analyzed. The amplitude and directional structure of radiation is
evaluated in cases when the cosmological constant is non-vanishing, so that the
conformal infinities have either de Sitter-like or anti-de Sitter-like
character. In particular, explicit relations between the parameters that
characterize the sources (that is their mass, electric and magnetic charges,
NUT parameter, rotational parameter, and acceleration) and properties of the
radiation generated by them are presented. The results further elucidate the
physical interpretation of these solutions and may help to understand radiative
characteristics of more general spacetimes than those that are asymptotically
flat.Comment: 24 pages, 18 figures. To appear in Classical and Quantum Gravit
Colossal negative magnetoresistance in dilute fluorinated graphene
Adatoms offer an effective route to modify and engineer the properties of
graphene. In this work, we create dilute fluorinated graphene using a clean,
controlled and reversible approach. At low carrier densities, the system is
strongly localized and exhibits an unexpected, colossal negative
magnetoresistance. The zero-field resistance is reduced by a factor of 40 at
the highest field of 9 T and shows no sign of saturation. Unusual "staircase"
field dependence is observed below 5 K. The magnetoresistance is highly
anisotropic. We discuss possible origins, considering quantum interference
effects and adatom-induced magnetism in graphene.Comment: 21 pages, 4 figures, including supplementary informatio
- …