1,836 research outputs found
Generalized Area Spectral Efficiency: An Effective Performance Metric for Green Wireless Communications
Area spectral efficiency (ASE) was introduced as a metric to quantify the
spectral utilization efficiency of cellular systems. Unlike other performance
metrics, ASE takes into account the spatial property of cellular systems. In
this paper, we generalize the concept of ASE to study arbitrary wireless
transmissions. Specifically, we introduce the notion of affected area to
characterize the spatial property of arbitrary wireless transmissions. Based on
the definition of affected area, we define the performance metric, generalized
area spectral efficiency (GASE), to quantify the spatial spectral utilization
efficiency as well as the greenness of wireless transmissions. After
illustrating its evaluation for point-to-point transmission, we analyze the
GASE performance of several different transmission scenarios, including
dual-hop relay transmission, three-node cooperative relay transmission and
underlay cognitive radio transmission. We derive closed-form expressions for
the GASE metric of each transmission scenario under Rayleigh fading environment
whenever possible. Through mathematical analysis and numerical examples, we
show that the GASE metric provides a new perspective on the design and
optimization of wireless transmissions, especially on the transmitting power
selection. We also show that introducing relay nodes can greatly improve the
spatial utilization efficiency of wireless systems. We illustrate that the GASE
metric can help optimize the deployment of underlay cognitive radio systems.Comment: 11 pages, 8 figures, accepted by TCo
- …