61,867 research outputs found

    A Novel Alcohol-Sensitive Site in the M3 Domain of the NMDA Receptor GluN2A Subunit

    Get PDF
    Accumulating studies have demonstrated that the N-methyl-D-aspartate receptor is one of the most important targets of ethanol in the central nervous system. Previous studies from this laboratory have found that one position in the third (F637) and two positions in the fourth (M823 and A825) membrane-associated (M) domains of the N-methyl-D-aspartate receptor GluN2A subunit modulate alcohol action and ion channel gating. Using site-directed mutagenesis and whole-cell patch-clamp recording, we have found an additional position in M3 of the GluN2A subunit, F636, which significantly influences ethanol sensitivity and functionally interacts with F637. Tryptophan substitution at F636 significantly decreased the ethanol IC50, decreased both peak and steady-state glutamate EC50, and altered agonist deactivation and apparent desensitization. There was a significant correlation between steadystate: peak current ratio, a measure of desensitization, and ethanol IC50 values for a series of mutants at this site, raising the possibility that changes in ethanol sensitivity may be secondary to changes in desensitization. Mutant cycle analysis revealed a significant interaction between F636 and F637 in regulating ethanol sensitivity. Our results suggest that F636 in the M3 domain of the GluN2A subunit not only influences channel gating and agonist potency, but also plays an important role in mediating the action of ethanol. These studies were supported by grants R01 AA015203-01A1 and AA015203-06A1 from the NIAAA to R.W.P

    Extended Optical Model Analyses of Elastic Scattering and Fusion Cross Section Data for the 12^{12}C+208^{208}Pb System at Near-Coulomb-Barrier Energies by using a Folding Potential

    Full text link
    Simultaneous χ2\chi^{2} analyses are performed for elastic scattering and fusion cross section data for the 12^{12}C+208^{208}Pb system at near-Coulomb-barrier energies by using the extended optical model approach in which the polarization potential is decomposed into direct reaction (DR) and fusion parts. Use is made of the double folding potential as a bare potential. It is found that the experimental elastic scattering and fusion data are well reproduced without introducing any normalization factor for the double folding potential and also that both DR and fusion parts of the polarization potential determined from the χ2\chi^{2} analyses satisfy separately the dispersion relation. Furthermore, it is shown that the imaginary parts of both DR and fusion potentials at the strong absorption radius change very rapidly, which results in a typical threshold anomaly in the total imaginary potential as observed with tightly bound projectiles such as α\alpha-particle and 16^{16}O.Comment: 26 pages, 7 figures, submitted to Physical Review

    An exact effective two-qubit gate in a chain of three spins

    Get PDF
    We show that an effective two-qubit gate can be obtained from the free evolution of three spins in a chain with nearest neighbor XY coupling, without local manipulations. This gate acts on the two remote spins and leaves the mediating spin unchanged. It can be used to perfectly transfer an arbitrary quantum state from the first spin to the last spin or to simultaneously communicate one classical bit in each direction. One ebit can be generated in half of the time for state transfer. For longer spin chains, we present methods to create or transfer entanglement between the two end spins in half of the time required for quantum state transfer, given tunable coupling strength and local magnetic field. We also examine imperfect state transfer through a homogeneous XY chain.Comment: RevTeX4, 7 pages, 4 figue
    corecore