5,707 research outputs found
Exact Cosmological Solutions of Theories via Hojman Symmetry
Nowadays, theory has been one of the leading modified gravity theories
to explain the current accelerated expansion of the universe, without invoking
dark energy. It is of interest to find the exact cosmological solutions of
theories. Besides other methods, symmetry has been proved as a powerful
tool to find exact solutions. On the other hand, symmetry might hint the deep
physical structure of a theory, and hence considering symmetry is also well
motivated. As is well known, Noether symmetry has been extensively used in
physics. Recently, the so-called Hojman symmetry was also considered in the
literature. Hojman symmetry directly deals with the equations of motion, rather
than Lagrangian or Hamiltonian, unlike Noether symmetry. In this work, we
consider Hojman symmetry in theories in both the metric and Palatini
formalisms, and find the corresponding exact cosmological solutions of
theories via Hojman symmetry. There exist some new solutions significantly
different from the ones obtained by using Noether symmetry in theories.
To our knowledge, they also have not been found previously in the literature.
This work confirms that Hojman symmetry can bring new features to cosmology and
gravity theories.Comment: 16 pages, revtex4; v2: discussions added, Nucl. Phys. B in press; v3:
published version. arXiv admin note: text overlap with arXiv:1505.0754
Nonlinear reconstruction
We present a direct approach to nonparametrically reconstruct the linear
density field from an observed nonlinear map. We solve for the unique
displacement potential consistent with the nonlinear density and positive
definite coordinate transformation using a multigrid algorithm. We show that we
recover the linear initial conditions up to the nonlinear scale
( for ) with minimal
computational cost. This reconstruction approach generalizes the linear
displacement theory to fully nonlinear fields, potentially substantially
expanding the baryon acoustic oscillations and redshift space distortions
information content of dense large scale structure surveys, including for
example SDSS main sample and 21cm intensity mapping initiatives.Comment: 7 pages, 7 figures, published versio
SU(3) trimer resonating-valence-bond state on the square lattice
We propose and study an SU(3) trimer resonating-valence-bond (tRVB) state
with point-group symmetry on the square lattice. By devising a
projected entangled-pair state representation, we show that all (connected)
correlation functions between local operators in this SU(3) tRVB state decay
exponentially, indicating its gapped nature. We further calculate the modular
and matrices by constructing all nine topological sectors on a torus
and establish the existence of topological order in this SU(3)
tRVB state.Comment: 6 pages, 6 figure
A General Analysis of Wtb anomalous Couplings
We investigate new physics effects on the Wtb effective couplings in a
model-independent manner. The new physics effects are summarized as four
independent couplings , , and . Using
single-top-quark productions and W-helicity fraction measurements at the LHC
and Tevatron, we perform a global fit to impose constraints on top quark
effective couplings. We introduce a set of parameters , , and
to study the correlations among Wtb effective couplings. We show that (i)
improving the measurements of and is important in
constraining the correlation of and ; (ii)
and are anti-correlated, which is sensitive to all the
experiments; (iii) and are also anti-correlated, which is
sensitive to the W-helicity measurements; (iv) the correlation between
and is sensitive to the precision of , and
measurements. The effective Wtb couplings are studied in three kinds of
new physics models: models, vector-like
quark models and Littlest Higgs model with and without T-parity. The Wtb
couplings in the left-right model and the un-unified model are sensitive to the
ratio of gauge couplings when the new heavy gauge boson's mass () is
less than several hundred GeV, but the constraint is loose if TeV.
The Wtb couplings in vector-like quark models and the Littlest Higgs models are
sensitive to the mixing angles of new heavy particles and SM particles. We also
include the constraints of the oblique T-parameter and Zbb couplings which
impose much tighter constraints on the mixing angles. We show that the Wtb
coupling constraints become relevant if the precision of single top production
cross section measurements could be reduced to 1\% relative to the SM
predictions in future.Comment: Chin. Phys. C in pres
The Top Quark Production Asymmetries and
A large forward-backward asymmetry is seen in both the top quark rapidity
distribution and in the rapidity distribution of charged leptons
from top quarks produced at the Tevatron. We study the kinematic
and dynamic aspects of the relationship of the two observables arising from the
spin correlation between the charged lepton and the top quark with different
polarization states. We emphasize the value of both measurements, and we
conclude that a new physics model which produces more right-handed than
left-handed top quarks is favored by the present data.Comment: accepted for publication in Physical Review Letter
Isobaric Reconstruction of the Baryonic Acoustic Oscillation
In this paper, we report a significant recovery of the linear baryonic
acoustic oscillation (BAO) signature by applying the isobaric reconstruction
algorithm to the non-linear matter density field. Assuming only the
longitudinal component of the displacement being cosmologically relevant, this
algorithm iteratively solves the coordinate transform between the Lagrangian
and Eulerian frames without requiring any specific knowledge of the dynamics.
For dark matter field, it produces the non-linear displacement potential with
very high fidelity. The reconstruction error at the pixel level is within a few
percent, and is caused only by the emergence of the transverse component after
the shell-crossing. As it circumvents the strongest non-linearity of the
density evolution, the reconstructed field is well-described by linear theory
and immune from the bulk-flow smearing of the BAO signature. Therefore this
algorithm could significantly improve the measurement accuracy of the sound
horizon scale. For a perfect large-scale structure survey at redshift zero
without Poisson or instrumental noise, the fractional error is reduced by a
factor of 2.7, very close to the ideal limit with linear power spectrum and
Gaussian covariance matrix.Comment: 5 pages, 3 figures, accepted versio
- …